
Beginning
Python

From Novice to Professional
—
Third Edition
—
Magnus Lie Hetland

Beginning Python
From Novice to Professional

Third Edition

Magnus Lie Hetland

Beginning Python: From Novice to Professional

Magnus Lie Hetland				
Trondheim, Norway			

ISBN-13 (pbk): 978-1-4842-0029-2		 ISBN-13 (electronic): 978-1-4842-0028-5
DOI 10.1007/978-1-4842-0028-5

Library of Congress Control Number: 2017934891

Copyright © 2017 by Magnus Lie Hetland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Michael Thomas
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Shutterstock

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/us/services/
rights-permission.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
for download or cloning at Github via the book's product page, located at www.apress.com/9781484200292.
For more detailed information, please visit http://www.apress.com/us/services/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484200292
http://www.apress.com/us/services/source-code

For Kjersti and Tor.

v

Contents at a Glance

About the Author��xxv

About the Technical Reviewer��xxvii

Preface��xxix

Introduction���xxxi

■■Chapter 1: Instant Hacking: The Basics�� 1

■■Chapter 2: Lists and Tuples�� 25

■■Chapter 3: Working with Strings�� 45

■■Chapter 4: Dictionaries: When Indices Won’t Do�� 59

■■Chapter 5: Conditionals, Loops, and Some Other Statements������������������������������ 71

■■Chapter 6: Abstraction��� 101

■■Chapter 7: More Abstraction�� 129

■■Chapter 8: Exceptions��� 149

■■Chapter 9: Magic Methods, Properties, and Iterators�� 163

■■Chapter 10: Batteries Included��� 195

■■Chapter 11: Files and Stuff��� 241

■■Chapter 12: Graphical User Interfaces��� 253

■■Chapter 13: Database Support�� 261

■■Chapter 14: Network Programming�� 273

■■Chapter 15: Python and the Web�� 289

■■Chapter 16: Testing, 1-2-3�� 307

﻿■ Contents at a Glance

vi

■■Chapter 17: Extending Python�� 321

■■Chapter 18: Packaging Your Programs��� 337

■■Chapter 19: Playful Programming�� 343

■■Chapter 20: Project 1: Instant Markup��� 353

■■Chapter 21: Project 2: Painting a Pretty Picture�� 373

■■Chapter 22: Project 3: XML for All Occasions��� 383

■■Chapter 23: Project 4: In the News��� 397

■■Chapter 24: Project 5: A Virtual Tea Party�� 409

■■Chapter 25: Project 6: Remote Editing with CGI��� 425

■■Chapter 26: Project 7: Your Own Bulletin Board��� 435

■■Chapter 27: Project 8: File Sharing with XML-RPC��� 451

■■Chapter 28: Project 9: File Sharing II—Now with GUI!��������������������������������������� 467

■■Chapter 29: Project 10: Do-It-Yourself Arcade Game��� 475

■■Appendix A: The Short Version��� 495

■■Appendix B: Python Reference��� 503

Index�� 519

vii

Contents

About the Author��xxv

About the Technical Reviewer��xxvii

Preface��xxix

Introduction���xxxi

■■Chapter 1: Instant Hacking: The Basics�� 1

The Interactive Interpreter��� 1

Algo . . . What?�� 2

Numbers and Expressions��� 3

Hexadecimals Octals and Binary �� 5

Variables�� 5

Statements�� 6

Getting Input from the User��� 7

Functions��� 8

Modules��� 9

cmath and Complex Numbers��� 10

Back to the __future__�� 11

Saving and Executing Your Programs�� 11

Running Your Python Scripts from a Command Prompt�� 13

Making Your Scripts Behave Like Normal Programs��� 13

Comments��� 14

Strings��� 14

Single-Quoted Strings and Escaping Quotes��� 15

Concatenating Strings��� 16

﻿■ Contents

viii

String Representations, str and repr��� 16

Long Strings, Raw Strings, and bytes�� 17

A Quick Summary�� 22

New Functions in This Chapter�� 23

What Now?�� 24

■■Chapter 2: Lists and Tuples�� 25

Sequence Overview�� 25

Common Sequence Operations��� 26

Indexing��� 26

Slicing�� 28

Adding Sequences��� 30

Multiplication��� 31

Membership��� 32

Length, Minimum, and Maximum�� 33

Lists: Python’s Workhorse��� 34

The list Function�� 34

Basic List Operations��� 34

List Methods�� 36

Tuples: Immutable Sequences�� 42

A Quick Summary�� 44

New Functions in This Chapter�� 44

What Now?�� 44

■■Chapter 3: Working with Strings�� 45

Basic String Operations��� 45

String Formatting: The Short Version�� 45

String Formatting: The Long Version��� 47

Replacement Field Names��� 47

Basic Conversions��� 48

Width, Precision, and Thousands Separators�� 49

Signs, Alignment, and Zero-Padding��� 50

﻿■ Contents

ix

String Methods�� 52

center�� 53

find�� 53

lower�� 54

replace��� 55

split�� 55

strip��� 56

translate�� 56

Is My String …�� 57

A Quick Summary�� 57

New Functions in This Chapter�� 58

What Now?�� 58

■■Chapter 4: Dictionaries: When Indices Won’t Do�� 59

Dictionary Uses��� 59

Creating and Using Dictionaries�� 60

The dict Function��� 60

Basic Dictionary Operations�� 61

String Formatting with Dictionaries��� 63

Dictionary Methods��� 63

A Quick Summary�� 70

New Functions in This Chapter�� 70

What Now?�� 70

■■Chapter 5: Conditionals, Loops, and Some Other Statements������������������������������ 71

More About print and import��� 71

Printing Multiple Arguments�� 71

Importing Something as Something Else�� 72

Assignment Magic��� 73

Sequence Unpacking��� 73

Chained Assignments�� 75

Augmented Assignments��� 75

﻿■ Contents

x

Blocks: The Joy of Indentation�� 76

Conditions and Conditional Statements�� 76

So That’s What Those Boolean Values Are For��� 76

Conditional Execution and the if Statement�� 78

else Clauses�� 78

elif Clauses�� 79

Nesting Blocks��� 79

More Complex Conditions�� 79

Assertions�� 84

Loops��� 85

while Loops��� 85

for Loops�� 86

Iterating Over Dictionaries��� 87

Some Iteration Utilities�� 87

Breaking Out of Loops��� 89

else Clauses in Loops�� 92

Comprehensions—Slightly Loopy��� 92

And Three for the Road�� 94

Nothing Happened!�� 94

Deleting with del�� 94

Executing and Evaluating Strings with exec and eval��� 96

A Quick Summary�� 98

New Functions in This Chapter�� 99

What Now?�� 99

■■Chapter 6: Abstraction��� 101

Laziness Is a Virtue�� 101

Abstraction and Structure��� 102

Creating Your Own Functions�� 102

Documenting Functions��� 103

Functions That Aren’t Really Functions��� 104

﻿■ Contents

xi

The Magic of Parameters�� 105

Where Do the Values Come From?�� 105

Can I Change a Parameter?��� 105

Why Would I Want to Modify My Parameters?��� 107

What If My Parameter Is Immutable?�� 110

Keyword Parameters and Defaults�� 111

Collecting Parameters��� 113

Reversing the Process��� 115

Parameter Practice�� 117

Scoping��� 118

Recursion�� 121

Two Classics: Factorial and Power�� 122

Another Classic: Binary Search��� 123

A Quick Summary�� 126

New Functions in This Chapter�� 127

What Now?�� 127

■■Chapter 7: More Abstraction�� 129

The Magic of Objects��� 129

Polymorphism�� 130

Polymorphism and Methods�� 131

Polymorphism Comes in Many Forms��� 132

Encapsulation�� 133

Inheritance��� 134

Classes�� 135

What Is a Class, Exactly?��� 135

Making Your Own Classes��� 135

Attributes, Functions, and Methods��� 137

Privacy Revisited��� 137

The Class Namespace��� 139

Specifying a Superclass�� 140

﻿■ Contents

xii

Investigating Inheritance��� 141

Multiple Superclasses��� 142

Interfaces and Introspection�� 143

Abstract Base Classes��� 144

Some Thoughts on Object-Oriented Design�� 146

A Quick Summary�� 147

New Functions in This Chapter�� 148

What Now?�� 148

■■Chapter 8: Exceptions��� 149

What Is an Exception?��� 149

Making Things Go Wrong . . . Your Way��� 149

The raise Statement�� 150

Custom Exception Classes��� 151

Catching Exceptions�� 151

Look, Ma, No Arguments!�� 152

More Than One except Clause��� 153

Catching Two Exceptions with One Block�� 154

Catching the Object��� 154

A Real Catchall�� 155

When All Is Well��� 155

And Finally . . .��� 157

Exceptions and Functions��� 158

The Zen of Exceptions��� 158

Not All That Exceptional��� 160

A Quick Summary�� 161

New Functions in This Chapter�� 162

What Now?�� 162

﻿■ Contents

xiii

■■Chapter 9: Magic Methods, Properties, and Iterators�� 163

If You’re Not Using Python 3�� 163

Constructors�� 164

Overriding Methods in General, and the Constructor in Particular�� 165

Calling the Unbound Superclass Constructor�� 167

Using the super Function��� 168

Item Access��� 169

The Basic Sequence and Mapping Protocol�� 170

Subclassing list, dict, and str��� 172

More Magic��� 173

Properties�� 174

The property Function��� 175

Static Methods and Class Methods��� 176

__getattr__, __setattr__, and Friends�� 177

Iterators��� 178

The Iterator Protocol�� 178

Making Sequences from Iterators��� 180

Generators��� 180

Making a Generator��� 181

A Recursive Generator��� 182

Generators in General�� 183

Generator Methods�� 184

Simulating Generators��� 185

The Eight Queens�� 186

Generators and Backtracking�� 186

The Problem�� 187

State Representation��� 187

Finding Conflicts�� 188

The Base Case��� 188

The Recursive Case��� 189

Wrapping It Up��� 191

﻿■ Contents

xiv

A Quick Summary�� 192

New Functions in This Chapter�� 193

What Now?�� 193

■■Chapter 10: Batteries Included��� 195

Modules��� 195

Modules Are Programs�� 195

Modules Are Used to Define Things��� 197

Making Your Modules Available��� 199

Packages��� 201

Exploring Modules��� 202

What’s in a Module?�� 202

Getting Help with help��� 203

Documentation�� 204

Use the Source�� 204

The Standard Library: A Few Favorites��� 205

sys��� 205

os��� 207

fileinput��� 208

Sets, Heaps, and Deques��� 210

time��� 215

random�� 216

shelve and json�� 219

re��� 223

Other Interesting Standard Modules�� 237

A Quick Summary�� 238

New Functions in This Chapter�� 239

What Now?�� 239

﻿■ Contents

xv

■■Chapter 11: Files and Stuff��� 241

Opening Files��� 241

File Modes��� 241

The Basic File Methods��� 242

Reading and Writing�� 243

Piping Output��� 244

Reading and Writing Lines��� 245

Closing Files�� 246

Using the Basic File Methods�� 247

Iterating over File Contents��� 248

One Character (or Byte) at a Time�� 248

One Line at a Time��� 249

Reading Everything��� 249

Lazy Line Iteration with fileinput��� 250

File Iterators�� 250

A Quick Summary�� 251

New Functions in This Chapter�� 252

What Now?�� 252

■■Chapter 12: Graphical User Interfaces��� 253

Building a Sample GUI Application�� 253

Initial Exploration��� 254

Layout�� 256

Event Handling��� 256

The Final Program��� 257

Using Something Else��� 259

A Quick Summary�� 259

What Now?�� 259

﻿■ Contents

xvi

■■Chapter 13: Database Support�� 261

The Python Database API�� 261

Global Variables��� 262

Exceptions��� 263

Connections and Cursors��� 263

Types��� 265

SQLite and PySQLite�� 265

Getting Started�� 267

A Sample Database Application��� 267

Creating and Populating Tables��� 268

Searching and Dealing with Results�� 269

A Quick Summary�� 270

New Functions in This Chapter�� 271

What Now?�� 271

■■Chapter 14: Network Programming�� 273

A Handful of Networking Modules��� 273

The socket Module�� 274

The urllib and urllib2 Modules��� 275

Opening Remote Files�� 276

Retrieving Remote Files��� 276

Other Modules��� 277

SocketServer and Friends��� 278

Multiple Connections��� 279

Forking and Threading with SocketServer�� 280

Asynchronous I/O with select and poll�� 281

Twisted�� 283

Downloading and Installing Twisted�� 284

Writing a Twisted Server�� 284

﻿■ Contents

xvii

A Quick Summary�� 286

New Functions in This Chapter�� 287

What Now?�� 287

■■Chapter 15: Python and the Web�� 289

Screen Scraping�� 289

Tidy and XHTML Parsing�� 290

What’s Tidy?�� 290

Getting Tidy�� 292

But Why XHTML?��� 293

Using HTMLParser��� 293

Beautiful Soup��� 295

Dynamic Web Pages with CGI�� 296

Step 1: Preparing the Web Server�� 296

Step 2: Adding the Pound Bang Line��� 297

Step 3: Setting the File Permissions�� 297

CGI Security Risks��� 298

A Simple CGI Script�� 298

Debugging with cgitb�� 299

Using the cgi Module��� 300

A Simple Form��� 301

Using a Web Framework��� 303

Other Web Application Frameworks�� 303

Web Services: Scraping Done Right�� 304

RSS and Friends�� 304

Remote Procedure Calls with XML-RPC�� 305

SOAP�� 306

A Quick Summary�� 306

New Functions in This Chapter�� 306

What Now?�� 306

﻿■ Contents

xviii

■■Chapter 16: Testing, 1-2-3�� 307

Test First, Code Later��� 307

Precise Requirement Specification��� 307

Planning for Change�� 309

The 1-2-3 (and 4) of Testing�� 310

Tools for Testing�� 310

doctest��� 310

unittest�� 312

Beyond Unit Tests�� 315

Source Code Checking with PyChecker and PyLint��� 315

Profiling��� 318

A Quick Summary�� 319

New Functions in This Chapter�� 320

What Now?�� 320

■■Chapter 17: Extending Python�� 321

The Best of Both Worlds�� 321

The Really Easy Way: Jython and IronPython�� 322

Writing C Extensions��� 325

A Swig of … SWIG��� 326

What Does It Do?��� 327

I Prefer Pi��� 327

The Interface File��� 328

Running SWIG�� 328

Compiling, Linking, and Using��� 329

A Shortcut Through the Magic Forest of Compilers��� 330

Hacking It on Your Own�� 330

Reference Counting��� 331

A Framework for Extensions��� 332

Palindromes, Detartrated1 for Your Enjoyment�� 333

﻿■ Contents

xix

A Quick Summary�� 335

New Functions in This Chapter�� 336

What Now?�� 336

■■Chapter 18: Packaging Your Programs��� 337

Setuptools Basics�� 337

Wrapping Things Up�� 339

Compiling Extensions�� 340

Creating Executable Programs with py2exe�� 341

A Quick Summary�� 342

New Functions in This Chapter�� 342

What Now?�� 342

■■Chapter 19: Playful Programming�� 343

Why Playful?�� 343

The Jujitsu of Programming�� 343

Prototyping�� 344

Configuration��� 345

Extracting Constants�� 345

Configuration Files��� 346

Logging��� 348

If You Can’t Be Bothered�� 349

If You Want to Learn More��� 350

A Quick Summary�� 350

What Now?�� 351

■■Chapter 20: Project 1: Instant Markup��� 353

What’s the Problem?��� 353

Useful Tools��� 354

Preparations�� 354

﻿■ Contents

xx

First Implementation��� 355

Finding Blocks of Text�� 355

Adding Some Markup�� 356

Second Implementation�� 358

Handlers�� 358

A Handler Superclass�� 359

Rules�� 360

A Rule Superclass�� 361

Filters��� 361

The Parser��� 362

Constructing the Rules and Filters�� 363

Putting It All Together�� 366

Further Exploration�� 370

What Now?�� 371

■■Chapter 21: Project 2: Painting a Pretty Picture�� 373

What’s the Problem?��� 373

Useful Tools��� 374

Preparations�� 374

First Implementation��� 375

Drawing with ReportLab�� 375

Constructing Some PolyLines�� 376

Writing the Prototype��� 377

Second Implementation�� 379

Getting the Data��� 379

Using the LinePlot Class�� 380

Further Exploration�� 382

What Now?�� 382

﻿■ Contents

xxi

■■Chapter 22: Project 3: XML for All Occasions��� 383

What’s the Problem?��� 383

Useful Tools��� 384

Preparations�� 385

First Implementation��� 386

Creating a Simple Content Handler��� 386

Creating HTML Pages�� 388

Second Implementation�� 391

A Dispatcher Mix-In Class��� 391

Factoring Out the Header, Footer, and Default Handling�� 392

Support for Directories�� 393

The Event Handlers�� 394

Further Exploration�� 396

What Now?�� 396

■■Chapter 23: Project 4: In the News��� 397

What’s the Problem?��� 397

Useful Tools��� 398

Preparations�� 398

First Implementation��� 398

Second Implementation�� 400

Further Exploration�� 407

What Now?�� 408

■■Chapter 24: Project 5: A Virtual Tea Party�� 409

What’s the Problem?��� 409

Useful Tools��� 409

Preparations�� 410

﻿■ Contents

xxii

First Implementation��� 411

The ChatServer Class�� 411

The ChatSession Class�� 412

Putting It Together��� 414

Second Implementation�� 416

Basic Command Interpretation�� 416

Rooms�� 417

Login and Logout Rooms��� 417

The Main Chat Room��� 418

The New Server��� 418

Further Exploration�� 424

What Now?�� 424

■■Chapter 25: Project 6: Remote Editing with CGI��� 425

What’s the Problem?��� 425

Useful Tools��� 425

Preparations�� 426

First Implementation��� 426

Second Implementation�� 427

Creating the File Name Form��� 428

Writing the Editor Script�� 428

Writing the Save Script�� 429

Running the Editor��� 431

Further Exploration�� 432

What Now?�� 433

■■Chapter 26: Project 7: Your Own Bulletin Board��� 435

What’s the Problem?��� 435

Useful Tools��� 436

Preparations�� 436

First Implementation��� 437

Second Implementation�� 442

﻿■ Contents

xxiii

Writing the Main Script�� 442

Writing the View Script�� 443

Writing the Edit Script��� 445

Writing the Save Script�� 446

Trying It Out��� 447

Further Exploration�� 449

What Now?�� 449

■■Chapter 27: Project 8: File Sharing with XML-RPC��� 451

What’s the Problem?��� 451

Useful Tools��� 452

Preparations�� 453

First Implementation��� 453

Implementing a Simple Node�� 453

Trying Out the First Implementation�� 458

Second Implementation�� 459

Creating the Client Interface�� 460

Raising Exceptions�� 461

Validating File Names�� 461

Trying Out the Second Implementation��� 466

Further Exploration�� 466

What Now?�� 466

■■Chapter 28: Project 9: File Sharing II—Now with GUI!��������������������������������������� 467

What’s the Problem?��� 467

Useful Tools��� 467

Preparations�� 467

First Implementation��� 468

Second Implementation�� 470

Further Exploration�� 472

What Now?�� 473

﻿■ Contents

xxiv

■■Chapter 29: Project 10: Do-It-Yourself Arcade Game��� 475

What’s the Problem?��� 475

Useful Tools��� 476

pygame�� 476

pygame.locals�� 476

pygame.display�� 476

pygame.font��� 477

pygame.sprite�� 477

pygame.mouse�� 477

pygame.event�� 478

pygame.image��� 478

Preparations�� 478

First Implementation��� 479

Second Implementation�� 482

Further Exploration�� 493

What Now?�� 493

■■Appendix A: The Short Version��� 495

The Basics��� 495

Functions��� 497

Objects and Stuff . . .��� 498

Some Loose Ends�� 501

■■Appendix B: Python Reference��� 503

Expressions��� 503

Statements�� 513

Simple Statements�� 513

Compound Statements�� 516

Index�� 519

xxv

About the Author

Magnus Lie Hetland is an experienced Python programmer, having used the
language since the late 1990s. He is also an associate professor of computer science
at the Norwegian University of Science and Technology, where he specializes in
algorithm analysis and design. Hetland is the author of Python Algorithms.

xxvii

About the Technical Reviewer

Michael Thomas has worked in software development for more than
20 years as an individual contributor, team lead, program manager, and
vice president of engineering. Michael has more than 10 years of
experience working with mobile devices. His current focus is in the
medical sector, using mobile devices to accelerate information transfer
between patients and healthcare providers.

xxix

Preface

To quote the old Monty Python song: “Here comes another one / Here it comes again / Here comes another
one / When will it ever end?” Since the previous edition, Python 3 has become much more widespread, so
this edition has fully transitioned to the Py3 world. There have been other changes as well, with packages
in the Python ecosystem coming and going and coding practices going in and out of fashion. Where it has
been necessary or useful, the book has been rewritten, but its origins are still visible. For example, when the
original Practical Python came out at the beginning of the millennium, Usenet was still in semi-widespread
use, though nowadays most Internet users probably haven’t even heard of it. So when the fourth code
project (Chapter 23) involves connecting to an NNTP server, this is more of a historical curiosity than skills
you are likely to apply directly in a mainstream programming career. Still, I’ve kept some of these more
quirky parts of the book, as they still work well as programming examples and as they are part of the history
of the book.

All the people who helped previous editions see the light of day still deserve as many thanks as before.
This time around, I would in particular like to extend my thanks to Mark Powers, who has been a paragon
of patience when my progress faltered. I’d also like to thank Michael Thomas, who has done a great job of
checking the technical aspects of the book (… and pointing out all the Python 2–style print statements I had
missed; I hope I got them all). I hope you enjoy this updated edition, even though, as Terry Jones says about
the song mentioned initially, “Obviously it would be better with a full orchestra.”

Preface to the Second Edition
Here it is—a shiny new edition of Beginning Python. If you count its predecessor, Practical Python, this is
actually the third edition, and a book I’ve been involved with for the better part of a decade. During this
time, Python has seen many interesting changes, and I’ve done my best to update my introduction to the
language. At the moment, Python is facing perhaps its most marked transition in a very long time: the
introduction of version 3. As I write this, the final release isn’t out yet, but the features are clearly defined
and working versions are available. One interesting challenge linked to this language revision is that it isn’t
backward-compatible. In other words, it doesn’t simply add features that I could pick and choose from in
my writing. It also changes the existing language, so that certain things that are true for Python 2.5 no longer
hold.

Had it been clear that the entire Python community would instantly switch to the new version and
update all its legacy code, this would hardly be a problem. Simply describe the new language! However, a lot
of code written for older versions exists, and much will probably still be written, until version 3 is universally
accepted as The Way To Go™.

So, how have I gotten myself out of this pickle? First of all, even though there are incompatible changes,
most of the language remains the same. Therefore, if I wrote entirely about Python 2.5, it would be mostly
correct for Python 3 (and even more so for its companion release, 2.6). As for the parts that will no longer
be correct, I have been a bit conservative and assumed that full adoption of version 3 will take some time. I
have based the book primarily on 2.5 and noted things that will change throughout the text. In addition, I’ve
included Appendix D, which gives you an overview of the main changes. I think this will work out for most
readers.

http://dx.doi.org/10.1007/978-1-4842-0028-5_23

■ Preface

xxx

In writing this second edition, I have had a lot of help from several people. Just as with the previous
two versions (the first edition, and, before it, Practical Python), Jason Gilmore got me started and played an
important role in getting the project on the road. As it has moved along, Richard Dal Porto, Frank Pohlmann,
and Dominic Shakeshaft have been instrumental in keeping it going. Richard Taylor has certainly played a
crucial role in ensuring that the code is correct (and if it still isn’t, I’m the one to blame), and Marilyn Smith
has done a great job tuning my writing. My thanks also go out to other Apress staff, including Liz Berry, Beth
Christmas, Steve Anglin, and Tina Nielsen, as well as various readers who have provided errata and helpful
suggestions, including Bob Helmbold and Waclaw Kusnierczyk. I am also, of course, still thankful to all those
who helped in getting the first two incarnations of this book on the shelves.

Preface to the First Edition
A few years ago, Jason Gilmore approached me about writing a book for Apress. He had read my online
Python tutorials and wanted me to write a book in a similar style. I was flattered, excited, and just a little
nervous. The one thing that worried me the most was how much time it would take, and how much it would
interfere with my studies (I was a Ph.D student at the time). It turned out to be quite an undertaking, and it
took me a lot longer to finish than I had expected.

Luckily, it didn’t interfere too much with my school work, and I managed to get my degree without any
delays.

Last year, Jason contacted me again. Apress wanted an expanded and revised version of my book. Was
I interested? At the time, I was busy settling into a new position as associate processor, while spending all
my spare time portraying Peer Gynt, so again time became the major issue. Eventually (after things had
settled down a bit, and I had a bit more time to spare), I agreed to do the book, and this (as I’m sure you’ve
gathered) is the result. Most of the material is taken from the first version of the book, Practical Python
(Apress, 2002). The existing material has been completely revised, based on recent changes in the Python
language, and several new chapters have been added. Some of the old material has also been redistributed
to accommodate the new structure. I’ve received a lot of positive feedback from readers about the first
version. I hope I’ve been able to keep what people liked and to add more of the same.

Without the persistent help and encouragement from several people, this book would never have
been written. My heartfelt thanks go out to all of them. In particular, I would like to thank the team that has
worked directly with me in the process of writing the book: Jason Gilmore, for getting the project off the
ground and steering it in the right direction; Beckie Stones, for keeping everything together; Jeremy Jones
and Matt Moodie for their technical comments and insights; and Linda Marousek for being so patient with
me. I’m also grateful to the rest of the team for making the process as smooth as it has been. But this book
wouldn’t be what it is without several people who worked with me on the previous version: I’d like to thank
Jason Gilmore and Alex Martelli for their excellent technical editing (Jason on the entire book, and Alex on
the first half) and for going above and beyond the call of duty in dispensing advice and suggestions; Erin
Mulligan and Tory McLearn for holding my hand through the process and for nudging me along when that
was needed; Nancy Rapoport for her help polishing my prose; and Grace Wong for providing answers when
no one else could. Pete Shinners gave me several helpful suggestions on the game in Project 10, for which
I am very grateful. My morale has also been heavily boosted by several encouraging emails from satisfied
readers—thanks! Finally, I would like to thank my family and friends, and my girlfriend, Ranveig, for putting
up with me while I was writing this book.

xxxi

Introduction

A C program is like a fast dance on a newly waxed dance floor by people carrying razors.

—Waldi Ravens

C++: Hard to learn and built to stay that way.

—Anonymous

Java is, in many ways, C++ – –.

—Michael Feldman

And now for something completely different . . .

—Monty Python’s Flying Circus

I’ve started this introduction with a few quotes to set the tone for the book, which is rather informal. In
the hope of making it an easy read, I’ve tried to approach the topic of Python programming with a healthy
dose of humor, and true to the traditions of the Python community, much of this humor is related to Monty
Python sketches. As a consequence, some of my examples may seem a bit silly; I hope you will bear with
me. (And, yes, the name Python is derived from Monty Python, not from snakes belonging to the family
Pythonidae.) In this introduction, I give you a quick look at what Python is, why you should use it, who uses
it, who this book’s intended audience is, and how the book is organized.

So, what is Python, and why should you use it? To quote an old official blurb, it is “an interpreted,
object-oriented, high-level programming language with dynamic semantics.” Many of these terms will
become clear as you read this book, but the gist is that Python is a programming language that knows how to
stay out of your way when you write your programs. It enables you to implement the functionality you want
without any hassle and lets you write programs that are clear and readable (much more so than programs in
most other currently popular programming languages).

Even though Python might not be as fast as compiled languages such as C or C++, what you save in
programming time will probably be worth using it, and in most programs, the speed difference won’t be
noticeable anyway. If you are a C programmer, you can easily implement the critical parts of your program
in C at a later date and have them interoperate with the Python parts. If you haven’t done any programming
before (and perhaps are a bit confused by my references to C and C++), Python’s combination of simplicity
and power makes it an ideal choice as a place to start.

So, who uses Python? Since Guido van Rossum created the language in the early 1990s, its following
has grown steadily, and interest has increased markedly in the past few years. Python is used extensively for
system administration tasks (it is, for example, a vital component of several Linux distributions), but it is also
used to teach programming to complete beginners. The US National Aeronautics and Space Administration
(NASA) uses Python both for development and as a scripting language in several of its systems. Industrial

■ Introduction

xxxii

Light & Magic uses Python in its production of special effects for large-budget feature films. Yahoo! uses it
(among other things) to manage its discussion groups. Google has used it to implement many components
of its web crawler and search engine. Python is being used in such diverse areas as computer games and
bioinformatics. Soon one might as well ask, “Who isn’t using Python?”

This book is for those of you who want to learn how to program in Python. It is intended to suit a wide
audience, from neophyte programmer to advanced computer wiz. If you have never programmed before,
you should start by reading Chapter 1 and continue until you find that things get too advanced for you
(if, indeed, they do). Then you should start practicing and write some programs of your own. When the time
is right, you can return to the book and proceed with the more intricate stuff.

If you already know how to program, some of the introductory material might not be new to you
(although there will probably be some surprising details here and there). You could skim through the early
chapters to get an idea of how Python works, or perhaps read through Appendix A, which is based on my
online Python tutorial “Instant Python.” It will get you up to speed on the most important Python concepts.
After getting the big picture, you could jump straight to Chapter 10 (which describes the Python standard
libraries).

The last ten chapters present ten programming projects, which show off various capabilities of the
Python language. These projects should be of interest to beginners and experts alike. Although some of the
material in the later projects may be a bit difficult for an inexperienced programmer, following the projects
in order (after reading the material in the first part of the book) should be possible.

The projects touch upon a wide range of topics, most of which will be very useful to you when writing
programs of your own. You will learn how to do things that may seem completely out of reach to you at this
point, such as creating a chat server, a peer-to-peer file-sharing system, or a full-fledged graphical computer
game. Although much of the material may seem hard at first glance, I think you will be surprised by how
easy most of it really is. If you would like to download the source code, it’s available from the Source
Code/Download section of the Apress web site (http://www.apress.com).

Well, that’s it. I always find long introductions a bit boring myself, so I’ll let you continue with your
Pythoneering, either in Chapter 1 or in Appendix A. Good luck, and happy hacking.

http://dx.doi.org/10.1007/978-1-4842-0028-5_1
http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_1

1© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_1

CHAPTER 1

Instant Hacking: The Basics

It’s time to start hacking.1 In this chapter, you learn how to take control of your computer by speaking a
language it understands: Python. Nothing here is particularly difficult, so if you know the basic principles
of how your computer works, you should be able to follow the examples and try them out yourself. I’ll go
through the basics, starting with the excruciatingly simple, but because Python is such a powerful language,
you’ll soon be able to do pretty advanced things.

To begin, you need to install Python, or verify that you already have it installed. If you’re running
macOS or Linux/UNIX, open a terminal (the Terminal app on a Mac), type in python, and press Enter. You
should get a welcome message, ending with the following prompt:

>>>

If you do, you can start entering Python commands immediately. Note, however, that you may have an old
version of Python. If the first line starts with Python 2 rather than Python 3, you might want to install a
newer version anyway, as Python 3 introduces several breaking changes.

The details of the installation process will of course vary with your OS and preferred installation
mechanism, but the most straightforward approach is to visit www.python.org, where you should find a link
to a download page. It is all pretty self-explanatory—just follow the link to the most recent version for your
platform, be it Windows, macOS, Linux/UNIX, or something else. For Windows and Mac, you’ll download
an installer that you can run to actually install Python. For Linux/UNIX, there are source code tarballs that
you’ll need to compile yourself, by following the included instructions. If you’re using a package manager
such as Homebrew or APT, you can use that to streamline the process.

Once you have Python installed, try to fire up the interactive interpreter. If you’re using the command
line, you could simply use the python command, or perhaps python3 if you have an older version installed
as well. If you’d rather use a graphical interface, you can start the IDLE app that comes with the Python
installation.

The Interactive Interpreter
When you start up Python, you get a prompt similar to the following:

Python 3.5.0 (default, Dec 5 2015, 15:03:35)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.1.76)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

1Hacking is not the same as cracking, which is a term describing computer crime. The two are often confused, and the
usage is gradually changing. Hacking, as I’m using it here, basically means “having fun while programming.”

http://www.python.org/

Chapter 1 ■ Instant Hacking: The Basics

2

The exact appearance of the interpreter and its error messages will depend on which version you are using.
This might not seem very interesting, but believe me, it is. This is your gateway to hackerdom—your first step
in taking control of your computer. In more pragmatic terms, it’s an interactive Python interpreter. Just to see
if it’s working, try the following:

>>> print("Hello, world!")

When you press the Enter key, the following output appears:

Hello, world!
>>>

If you are familiar with other computer languages, you may be used to terminating every line with a
semicolon. There is no need to do so in Python. A line is a line, more or less. You may add a semicolon if you
like, but it won’t have any effect (unless more code follows on the same line), and it is not a common thing
to do.

So what happened here? The >>> thingy is the prompt. You can write something in this space, like print
"Hello, world!". If you press Enter, the Python interpreter prints out the string “Hello, world!” and you get
a new prompt below that.

What if you write something completely different? Try it out:

>>> The Spanish Inquisition
SyntaxError: invalid syntax
>>>

Obviously, the interpreter didn’t understand that.2 (If you are running an interpreter other than IDLE,
such as the command-line version for Linux, the error message will be slightly different.) The interpreter
also indicates what’s wrong: it will emphasize the word Spanish by giving it a red background (or, in the
command-line version, by using a caret, ^).

If you feel like it, play around with the interpreter some more. For some guidance, try entering the
command help() at the prompt and pressing Enter. You can press F1 for help about IDLE. Otherwise, let’s
press on. After all, the interpreter isn’t much fun when you don’t know what to tell it.

Algo . . . What?
Before we start programming in earnest, I’ll try to give you an idea of what computer programming is. Simply
put, it’s telling a computer what to do. Computers can do a lot of things, but they aren’t very good at thinking
for themselves. They really need to be spoon-fed the details. You need to feed the computer an algorithm
in some language it understands. Algorithm is just a fancy word for a procedure or recipe—a detailed
description of how to do something. Consider the following:

SPAM with SPAM, SPAM, Eggs, and SPAM: First, take some SPAM.
Then add some SPAM, SPAM, and eggs.
If a particularly spicy SPAM is desired, add some SPAM.
Cook until done -- Check every 10 minutes.

2After all, no one expects the Spanish Inquisition . . .

Chapter 1 ■ Instant Hacking: The Basics

3

Not the fanciest of recipes, but its structure can be quite illuminating. It consists of a series of instructions to
be followed in order. Some of the instructions may be done directly (“take some SPAM”), while some require
some deliberation (“If a particularly spicy SPAM is desired”), and others must be repeated several times
(“Check every 10 minutes.”)

Recipes and algorithms consist of ingredients (objects, things) and instructions (statements). In this
example, SPAM and eggs are the ingredients, while the instructions consist of adding SPAM, cooking for a
given length of time, and so on. Let’s start with some reasonably simple Python ingredients and see what you
can do with them.

Numbers and Expressions
The interactive Python interpreter can be used as a powerful calculator. Try the following:

>>> 2 + 2

This should give you the answer 4. That wasn’t too hard. Well, what about this:

>>> 53672 + 235253
288925

Still not impressed? Admittedly, this is pretty standard stuff. (I’ll assume that you’ve used a calculator
enough to know the difference between 1 + 2 * 3 and (1 + 2) * 3.) All the usual arithmetic operators
work as expected. Division produces decimal numbers, called floats (or floating-point numbers).

>>> 1 / 2
0.5
>>> 1 / 1
1.0

If you’d rather discard the fractional part and do integer division, you can use a double slash.

>>> 1 // 2
0
>>> 1 // 1
1
>>> 5.0 // 2.4
2.0

In older versions of Python, ordinary division on integers used to work like this double slash. If you’re using
Python 2.x, you can get proper division by adding the following statement to the beginning of your program
(writing full programs is described later) or simply executing it in the interactive interpreter:

>>> from __future__ import division

■■ Note  In case it’s not entirely clear, the future in the instruction is surrounded by two underscores on both
sides: _ _future_ _.

Chapter 1 ■ Instant Hacking: The Basics

4

Another alternative, if you’re running an old Python from the command line, is to supply the command-
line switch -Qnew. There is a more thorough explanation of the __future__ stuff in the section “Back to the
__future__” later in this chapter.

Now you’ve seen the basic arithmetic operators (addition, subtraction, multiplication, and division),
but I’ve left out a close relative of integer division.

>>> 1 % 2
1

This is the remainder (modulus) operator. x % y gives the remainder of x divided by y. In other words, it’s
the part that’s left over when you use integer division. That is, x % y is the same as x - ((x // y) * y).

>>> 10 // 3
3
>>> 10 % 3
1
>>> 9 // 3
3
>>> 9 % 3
0
>>> 2.75 % 0.5
0.25

Here 10 // 3 is 3 because the result is rounded down. But 3 × 3 is 9, so you get a remainder of 1. When you
divide 9 by 3, the result is exactly 3, with no rounding. Therefore, the remainder is 0. This may be useful
if you want to check something “every 10 minutes” as in the recipe earlier in the chapter. You can simply
check whether minute % 10 is 0. (For a description on how to do this, see the sidebar “Sneak Peek: The if
Statement” later in this chapter.) As you can see from the final example, the remainder operator works just
fine with floats as well. It even works with negative numbers, and this can be a little confusing.

>>> 10 % 3
1
>>> 10 % -3
-2
>>> -10 % 3
2
>>> -10 % -3
-1

Looking at these examples, it might not be immediately obvious how it works. It’s probably easier to
understand if you look at the companion operation of integer division.

>>> 10 // 3
3
>>> 10 // -3
-4
>>> -10 // 3
-4
>>> -10 // -3
3

Chapter 1 ■ Instant Hacking: The Basics

5

Given how the division works, it’s not that hard to understand what the remainder must be. The important
thing to understand about integer division is that it is rounded down, which for negative numbers is away
from zero. That means -10 // 3 is rounded down to -4, not up to -3.

The last operator we’ll look at is the exponentiation (or power) operator.

>>> 2 ** 3
8
>>> -3 ** 2
-9
>>> (-3) ** 2
9

Note that the exponentiation operator binds tighter than the negation (unary minus), so -3**2 is in fact the
same as -(3**2). If you want to calculate (-3)**2, you must say so explicitly.

Hexadecimals Octals and Binary
To conclude this section, I should mention that hexadecimal, octal, and binary numbers are written like this:

>>> 0xAF
175
>>> 010
8
>>> 0b1011010010
722

The first digit in both of these is zero. (If you don’t know what this is all about, you probably don’t need this
quite yet. Just file it away for later use.)

Variables
Another concept that might be familiar to you is variables. If algebra is but a distant memory, don’t worry:
variables in Python are easy to understand. A variable is a name that represents (or refers to) some value. For
example, you might want the name x to represent 3. To make it so, simply execute the following:

>>> x = 3

This is called an assignment. We assign the value 3 to the variable x. Another way of putting this is to say that
we bind the variable x to the value (or object) 3. After you’ve assigned a value to a variable, you can use the
variable in expressions.

>>> x * 2
6

Unlike some other languages, you can’t use a variable before you bind it to something. There is no “default
value.”

Chapter 1 ■ Instant Hacking: The Basics

6

■■ Note  The simple story is that names, or identifiers, in Python consist of letters, digits, and underscore
characters (_). They can’t begin with a digit, so Plan9 is a valid variable name, whereas 9Plan is not.3

Statements
Until now we’ve been working (almost) exclusively with expressions, the ingredients of the recipe. But what
about statements—the instructions?

In fact, I’ve cheated. I’ve introduced two types of statements already: the print statement and
assignments. What’s the difference between a statement and an expression? You could think of it like this: an
expression is something, while a statement does something. For example, 2 * 2 is 4, whereas print(2 * 2)
prints 4. The two behave quite similarly, so the difference between them might not be all that clear.

>>> 2 * 2
4
>>> print(2 * 2)
4

As long as you execute this in the interactive interpreter, there’s no difference, but that is only because the
interpreter always prints out the values of all expressions (using the same representation as repr—see the
section “String Representations, str and repr” later in this chapter). That is not true of Python in general.
Later in this chapter, you’ll see how to make programs that run without this interactive prompt; simply
putting an expression such as 2 * 2 in your program won’t do anything interesting.4 Putting print(2 * 2)
in there, however, will still print out 4.

■■ Note  Actually, print is a function (more on those later in the chapter), so what I’m referring to as a
print statement is simply a function call. In Python 2.x, print had a statement type of its own and didn’t use
parentheses around its arguments.

The difference between statements and expressions is more obvious when dealing with assignments.
Because they are not expressions, they have no values that can be printed out by the interactive interpreter.

>>> x = 3
>>>

You simply get a new prompt immediately. Something has changed, however. We now have a new variable
x, which is now bound to the value 3. To some extent, this is a defining quality of statements in general: they
change things. For example, assignments change variables, and print statements change how your screen
looks.

3The slightly less simple story is that the rules for identifier names are in part based on the Unicode standard, as documented
in the Python Language Reference at https://docs.python.org/3/reference/lexical_analysis.html.
4In case you’re wondering—yes, it does do something. It calculates the product of 2 and 2. However, the result isn’t kept
anywhere or shown to the user; it has no side effects, beyond the calculation itself.

https://docs.python.org/3/reference/lexical_analysis.html

Chapter 1 ■ Instant Hacking: The Basics

7

Assignments are probably the most important type of statement in any programming language,
although it may be difficult to grasp their importance right now. Variables may just seem like temporary
“storage” (like the pots and pans of a cooking recipe), but the real power of variables is that you don’t need to
know what values they hold in order to manipulate them.5

For example, you know that x * y evaluates to the product of x and y, even though you may have
no knowledge of what x and y are. So, you may write programs that use variables in various ways without
knowing the values they will eventually hold (or refer to) when the program is run.

Getting Input from the User
You’ve seen that you can write programs with variables without knowing their values. Of course, the
interpreter must know the values eventually. So how can it be that we don’t? The interpreter knows only
what we tell it, right? Not necessarily.

You may have written a program, and someone else may use it. You cannot predict what values users
will supply to the program. Let’s take a look at the useful function input. (I’ll have more to say about
functions in a minute.)

>>> input("The meaning of life: ")
The meaning of life: 42
'42'

What happens here is that the first line (input(...)) is executed in the interactive interpreter. It prints out
the string "The meaning of life: " as a new prompt. I type 42 and press Enter. The resulting value of
input is that very number (as a piece of text, or string), which is automatically printed out in the last line.
Converting the strings to integers using int, we can construct a slightly more interesting example:

>>> x = input("x: ")
x: 34
>>> y = input("y: ")
y: 42
>>> print(int(x) * int(y))
1428

Here, the statements at the Python prompts (>>>) could be part of a finished program, and the values entered
(34 and 42) would be supplied by some user. Your program would then print out the value 1428, which is the
product of the two. And you didn’t have to know these values when you wrote the program, right?

■■ Note  Getting input like this is much more useful when you save your programs in a separate file so other users
can execute them. You learn how to do that later in this chapter, in the section “Saving and Executing Your Programs.”

5Note the quotes around storage. Values aren’t stored in variables—they’re stored in some murky depths of computer
memory and are referred to by variables. As will become abundantly clear as you read on, more than one variable can
refer to the same value.

Chapter 1 ■ Instant Hacking: The Basics

8

SNEAK PEEK: THE IF STATEMENT

To spice things up a bit, I’ll give you a sneak peek of something you aren’t really supposed to learn
about until Chapter 5: the if statement. The if statement lets you perform an action (another
statement) if a given condition is true. One type of condition is an equality test, using the equality
operator, ==. Yes, it’s a double equality sign. (The single one is used for assignments, remember?)

You put this condition after the word if and then separate it from the following statement with a colon.

>>> if 1 == 2: print('One equals two')
...
>>> if 1 == 1: print('One equals one')
...
One equals one
>>>

Nothing happens when the condition is false. When it is true, however, the statement following the colon
(in this case, a print statement) is executed. Note also that when using if statements in the interactive
interpreter, you need to press Enter twice before it is executed. (The reason for this will become clear in
Chapter 5.)

So, if the variable time is bound to the current time in minutes, you could check whether you’re “on the
hour” with the following statement:

if time % 60 == 0: print('On the hour!')

Functions
In the “Numbers and Expressions” section, I used the exponentiation operator (**) to calculate powers. The
fact is that you can use a function instead, called pow.

>>> 2 ** 3
8
>>> pow(2, 3)
8

A function is like a little program that you can use to perform a specific action. Python has a lot of functions
that can do many wonderful things. In fact, you can make your own functions, too (more about that later);
therefore, we often refer to standard functions such as pow as built-in functions.

Using a function as I did in the preceding example is called calling the function. You supply it with
arguments (in this case, 2 and 3), and it returns a value to you. Because it returns a value, a function call is
simply another type of expression, like the arithmetic expressions discussed earlier in this chapter.6 In fact, you
can combine function calls and operators to create more complicated expressions (like I did with int, earlier).

6Function calls can also be used as statements if you simply ignore the return value.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5
http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 1 ■ Instant Hacking: The Basics

9

>>> 10 + pow(2, 3 * 5) / 3.0
10932.666666666666

Several built-in functions can be used in numeric expressions like this. For example, abs gives the absolute
value of a number, and round rounds floating-point numbers to the nearest integer.

>>> abs(-10)
10
>>> 2 // 3
0
>>> round(2 / 3)
1.0

Notice the difference between the two last expressions. Integer division always rounds down, whereas round
rounds to the nearest integer, with ties rounded toward the even number. But what if you want to round a
given number down? For example, you might know that a person is 32.9 years old, but you would like to
round that down to 32 because she isn’t really 33 yet. Python has a function for this (called floor)—it just
isn’t available directly. As is the case with many useful functions, it is found in a module.

Modules
You may think of modules as extensions that can be imported into Python to expand its capabilities. You
import modules with a special command called (naturally enough) import. The function mentioned in the
previous section, floor, is in a module called math.

>>> import math
>>> math.floor(32.9)
32

Notice how this works: we import a module with import and then use the functions from that module by
writing module.function. For this operation in particular, you could actually just convert the number into an
integer, like I did earlier, with the results from input.

>>> int(32.9)
32

■■ Note  Similar functions exist to convert to other types (for example, str and float). In fact, these aren’t
really functions—they’re classes. I’ll have more to say about classes later.

The math module has several other useful functions, though. For example, the opposite of floor is ceil
(short for “ceiling”), which finds the smallest integral value larger than or equal to the given number.

>>> math.ceil(32.3)
33
>>> math.ceil(32)
32

Chapter 1 ■ Instant Hacking: The Basics

10

If you are sure that you won’t import more than one function with a given name (from different modules),
you might not want to write the module name each time you call the function. Then you can use a variant of
the import command.

>>> from math import sqrt
>>> sqrt(9)
3.0

After using the from module import function, you can use the function without its module prefix.

■■ Tip  You may, in fact, use variables to refer to functions (and most other things in Python). By performing
the assignment foo = math.sqrt, you can start using foo to calculate square roots; for example, foo(4)
yields 2.0.

cmath and Complex Numbers
The sqrt function is used to calculate the square root of a number. Let’s see what happens if we supply it
with a negative number:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
...
ValueError: math domain error

or, on some platforms:

>>> sqrt(-1)
nan

■■ Note  nan is simply a special value meaning “not a number.”

If we restrict ourselves to real numbers and their approximate implementation in the form of floats, we can’t
take the square root of a negative number. The square root of a negative number is a so-called imaginary
number, and numbers that are the sum of a real and an imaginary part are called complex. The Python
standard library has a separate module for dealing with complex numbers.

>>> import cmath
>>> cmath.sqrt(-1)
1j

Notice that I didn’t use from ... import ... here. If I had, I would have lost my ordinary sqrt. Name
clashes like these can be sneaky, so unless you really want to use the from version, you should probably stick
with a plain import.

The value 1j is an example of an imaginary number. These numbers are written with a trailing j (or J).
Complex arithmetic essentially follows from defining 1j as the square root of -1. Without delving too deeply
into the topic, let me just show a final example:

Chapter 1 ■ Instant Hacking: The Basics

11

>>> (1 + 3j) * (9 + 4j)
(-3 + 31j)

As you can see, the support for complex numbers is built into the language.

■■ Note  There is no separate type for imaginary numbers in Python. They are treated as complex numbers
whose real component is zero.

Back to the __future__
It has been rumored that Guido van Rossum (Python’s creator) has a time machine—on more than one
occasion when people have requested features in the language, they have found that the features were already
implemented. Of course, we aren’t all allowed into this time machine, but Guido has been kind enough to
build a part of it into Python, in the form of the magic module __future__. From it, we can import features
that will be standard in Python in the future but that aren’t part of the language yet. You saw this in the
“Numbers and Expressions” section, and you’ll be bumping into it from time to time throughout this book.

Saving and Executing Your Programs
The interactive interpreter is one of Python’s great strengths. It makes it possible to test solutions and to
experiment with the language in real time. If you want to know how something works, just try it! However,
everything you write in the interactive interpreter is lost when you quit. What you really want to do is write
programs that both you and other people can run. In this section, you learn how to do just that.

First of all, you need a text editor, preferably one intended for programming. (If you use something like
Microsoft Word, which I really don’t really recommend, be sure to save your code as plain text.) If you are
already using IDLE, you’re in luck. With IDLE, you can simply create a new editor window with File › New
File. Another window appears, without an interactive prompt. Whew! Start by entering the following:

print("Hello, world!")

Now select File › Save to save your program (which is, in fact, a plain text file). Be sure to put it somewhere
where you can find it later, and give your file any reasonable name, such as hello.py. (The .py ending is
significant.)

Got that? Don’t close the window with your program in it. If you did, just open it again (File › Open).
Now you can run it with Run › Run Module. (If you aren’t using IDLE, see the next section about running
your programs from the command prompt.)

What happens? Hello, world! is printed in the interpreter window, which is exactly what we wanted.
The interpreter prompt may be gone (depending on the version you’re using), but you can get it back by
pressing Enter (in the interpreter window).

Let’s extend our script to the following:

name = input("What is your name? ")
print("Hello, " + name + "!")

Chapter 1 ■ Instant Hacking: The Basics

12

If you run this (remember to save it first), you should see the following prompt in the interpreter window:

What is your name?

Enter your name (for example, Gumby) and press Enter. You should get something like this:

Hello, Gumby!

TURTLE POWER!

The print statement is useful for basic examples because it works virtually everywhere. If you’d like to
experiment with more visually interesting output, you should take a look at the turtle module, which
implements so-called turtle graphics. If you have IDLE up and running, the turtle module should work
just fine, and it lets you draw figures rather than print text. Though it is a practice you should be wary
of in general, while playing around with turtle graphics, it can be convenient to simply import all names
from the module.

from turtle import *

Once you’ve figured out which functions you need, you can go back to only importing those.

The idea of turtle graphics stems from actual turtle-like robots that could move forward and backward
and turn a given number of degrees left or right. In addition, they carried a pen, which they could move
up or down to determine whether it touched the piece of paper they were moving on. The turtle
module gives you a simulation of such a robot. For example, here’s how you’d draw a triangle:

forward(100)
left(120)
forward(100)
left(120)
forward(100)

If you run this, a new window should appear, with a little arrow-shaped “turtle” moving around, with a
line trailing behind it. To ask it to lift the pen, you use penup(), and to put it down again, pendown(). For
more commands, consult the relevant section of the Python Library Reference (https://docs.python.
org/3/library/turtle.html), and for drawing ideas, try a web search for turtle graphics. As you
learn additional concepts, you might want to experiment with turtle alternatives to the more mundane
print examples. And playing around with turtle graphics quickly demonstrates the need for some of
the basic programming constructs I’ll be showing you. (For example, how would you avoid repeating the
forward and left commands in the previous example? How would you draw, say, an octagon instead
of a triangle? Or several regular polygons with different number of sides, with as few lines of code as
possible?)

https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html

Chapter 1 ■ Instant Hacking: The Basics

13

Running Your Python Scripts from a Command Prompt
Actually, there are several ways to run your programs. First, let’s assume you have a DOS window or a UNIX
shell prompt before you and that the directory containing the Python executable (called python.exe in
Windows, and python in UNIX) or the directory containing the executable (in Windows) has been put in
your PATH environment variable.7 Also, let’s assume that your script from the previous section (hello.py) is
in the current directory. Then you can execute your script with the following command in Windows:

C:\>python hello.py

or UNIX:

$ python hello.py

As you can see, the command is the same. Only the system prompt changes.

Making Your Scripts Behave Like Normal Programs
Sometimes you want to execute a Python program (also called a script) the same way you execute other
programs (such as your web browser or text editor), rather than explicitly using the Python interpreter.
In UNIX, there is a standard way of doing this: have the first line of your script begin with the character
sequence #! (called pound bang or shebang) followed by the absolute path to the program that interprets the
script (in our case Python). Even if you didn’t quite understand that, just put the following in the first line of
your script if you want it to run easily on UNIX:

#!/usr/bin/env python

This should run the script, regardless of where the Python binary is located. If you have more than one
version of Python installed, you could use a more specific executable name, such as python3, rather than
simply python.

Before you can actually run your script, you must make it executable.

$ chmod a+x hello.py

Now it can be run like this (assuming that you have the current directory in your path):

$ hello.py

If this doesn’t work, try using ./hello.py instead, which will work even if the current directory (.) is not part
of your execution path (which a responsible sysadmin would probably tell you it shouldn’t be).

If you like, you can rename your file and remove the py suffix to make it look more like a normal
program.

7If you don’t understand this sentence, you should perhaps skip the section. You don’t really need it.

Chapter 1 ■ Instant Hacking: The Basics

14

What About Double-Clicking?
In Windows, the suffix (.py) is the key to making your script behave like a program. Try double-clicking the
file hello.py you saved in the previous section. If Python was installed correctly, a DOS window appears
with the prompt “What is your name?”8 There is one problem with running your program like this, however.
Once you’ve entered your name, the program window closes before you can read the result. The window
closes when the program is finished. Try changing the script by adding the following line at the end:

input("Press <enter>")

Now, after running the program and entering your name, you should have a DOS window with the following
contents:

What is your name? Gumby
Hello, Gumby!
Press <enter>

Once you press the Enter key, the window closes (because the program is finished).

Comments
The hash sign (#) is a bit special in Python. When you put it in your code, everything to the right of it is
ignored (which is why the Python interpreter didn’t choke on the /usr/bin/env stuff used earlier). Here is
an example:

Print the circumference of the circle:
print(2 * pi * radius)

The first line here is called a comment, which can be useful in making programs easier to understand—
both for other people and for yourself when you come back to old code. It has been said that the first
commandment of programmers is “Thou Shalt Comment” (although some less charitable programmers
swear by the motto “If it was hard to write, it should be hard to read”). Make sure your comments say
significant things and don’t simply restate what is already obvious from the code. Useless, redundant
comments may be worse than none. For example, in the following, a comment isn’t really called for:

Get the user's name:
user_name = input("What is your name?")

It’s always a good idea to make your code readable on its own as well, even without the comments. Luckily,
Python is an excellent language for writing readable programs.

Strings
Now what was all that "Hello, " + name + "!" stuff about? The first program in this chapter was simply

print("Hello, world!")

8This behavior depends on your operating system and the installed Python interpreter. If you’ve saved the file using IDLE
in macOS, for example, double-clicking the file will simply open it in the IDLE code editor.

Chapter 1 ■ Instant Hacking: The Basics

15

It is customary to begin with a program like this in programming tutorials. The problem is that I haven’t
really explained how it works yet. You know the basics of the print statement (I’ll have more to say about
that later), but what is "Hello, world!"? It’s called a string (as in “a string of characters”). Strings are found
in almost every useful, real-world Python program and have many uses. Their main use is to represent bits of
text, such as the exclamation “Hello, world!”

Single-Quoted Strings and Escaping Quotes
Strings are values, just as numbers are:

>>> "Hello, world!"
'Hello, world!'

There is one thing that may be a bit surprising about this example, though: when Python printed out our
string, it used single quotes, whereas we used double quotes. What’s the difference? Actually, there is no
difference.

>>> 'Hello, world!'
'Hello, world!'

Here, we use single quotes, and the result is the same. So why allow both? Because in some cases it may be
useful.

>>> "Let's go!"
"Let's go!"
>>> '"Hello, world!" she said'
'"Hello, world!" she said'

In the preceding code, the first string contains a single quote (or an apostrophe, as we should perhaps call
it in this context), and therefore we can’t use single quotes to enclose the string. If we did, the interpreter
would complain (and rightly so).

>>> 'Let's go!'
SyntaxError: invalid syntax

Here, the string is 'Let', and Python doesn’t quite know what to do with the following s (or the rest of the
line, for that matter).

In the second string, we use double quotes as part of our sentence. Therefore, we have to use single
quotes to enclose our string, for the same reasons as stated previously. Or, actually we don’t have to. It’s just
convenient. An alternative is to use the backslash character (\) to escape the quotes in the string, like this:

>>> 'Let\'s go!'
"Let's go!"

Python understands that the middle single quote is a character in the string and not the end of the string.
(Even so, Python chooses to use double quotes when printing out the string.) The same works with double
quotes, as you might expect.

>>> "\"Hello, world!\" she said"
'"Hello, world!" she said'

Chapter 1 ■ Instant Hacking: The Basics

16

Escaping quotes like this can be useful, and sometimes necessary. For example, what would you do without
the backslash if your string contained both single and double quotes, as in the string 'Let\'s say "Hello,
world!"'?

■■ Note  Tired of backslashes? As you will see later in this chapter, you can avoid most of them by using long
strings and raw strings (which can be combined).

Concatenating Strings
Just to keep whipping this slightly tortured example, let me show you another way of writing the same string:

>>> "Let's say " '"Hello, world!"'
'Let\'s say "Hello, world!"'

I’ve simply written two strings, one after the other, and Python automatically concatenates them (makes
them into one string). This mechanism isn’t used very often, but it can be useful at times. However, it works
only when you actually write both strings at the same time, directly following one another.

>>> x = "Hello, "
>>> y = "world!"
>>> x y
SyntaxError: invalid syntax

In other words, this is just a special way of writing strings, not a general method of concatenating them. How,
then, do you concatenate strings? Just like you add numbers:

>>> "Hello, " + "world!"
'Hello, world!'
>>> x = "Hello, "
>>> y = "world!"
>>> x + y
'Hello, world!'

String Representations, str and repr
Throughout these examples, you have probably noticed that all the strings printed out by Python are still
quoted. That’s because it prints out the value as it might be written in Python code, not how you would like it
to look for the user. If you use print, however, the result is different.

>>> "Hello, world!"
'Hello, world!'
>>> print("Hello, world!")
Hello, world!

The difference is even more obvious if we sneak in the special linefeed character code \n.

Chapter 1 ■ Instant Hacking: The Basics

17

>>> "Hello,\nworld!"
'Hello,\nworld!'
>>> print("Hello,\nworld!")
Hello,
world!

Values are converted to strings through two different mechanisms. You can access both mechanisms
yourself, by using the functions str and repr.9 With str, you convert a value into a string in some reasonable
fashion that will probably be understood by a user, for example, converting any special character codes
to the corresponding characters, where possible. If you use repr, however, you will generally get a
representation of the value as a legal Python expression.

>>> print(repr("Hello,\nworld!"))
'Hello,\nworld!'
>>> print(str("Hello,\nworld!"))
Hello,
world!

Long Strings, Raw Strings, and bytes
There are some useful, slightly specialized ways of writing strings. For example, there’s a custom syntax for
writing strings that include newlines (long strings) or backslashes (raw strings). In Python 2, there was also a
separate syntax for writing strings with special symbols of different kinds, producing objects of the unicode
type. The syntax still works but is now redundant, because all strings in Python 3 are Unicode strings.
Instead, a new syntax has been introduced to specify a bytes object, roughly corresponding to the old-
school strings. As we shall see, these still play an important part in the handling of Unicode encodings.

Long Strings
If you want to write a really long string, one that spans several lines, you can use triple quotes instead of
ordinary quotes.

print('''This is a very long string. It continues here.
And it's not over yet. "Hello, world!"
Still here.''')

You can also use triple double quotes, """like this""". Note that because of the distinctive enclosing
quotes, both single and double quotes are allowed inside, without being backslash-escaped.

■■ Tip  Ordinary strings can also span several lines. If the last character on a line is a backslash, the line
break itself is “escaped” and ignored. For example:

print("Hello, \ world!")

9Actually, str is a class, just like int. repr, however, is a function.

Chapter 1 ■ Instant Hacking: The Basics

18

would print out Hello, world!. The same goes for expressions and statements in general.

>>> 1 + 2 + \

 4 + 5

12

>>> print \

 ('Hello, world')

Hello, world

Raw Strings
Raw strings aren’t too picky about backslashes, which can be very useful sometimes.10 In ordinary strings, the
backslash has a special role: it escapes things, letting you put things into your string that you couldn’t normally
write directly. For example, as we’ve seen, a newline is written \n and can be put into a string like this:

>>> print('Hello,\nworld!')
Hello,
world!

This is normally just dandy, but in some cases, it’s not what you want. What if you wanted the string to
include a backslash followed by an n? You might want to put the DOS pathname C:\nowhere into a string.

>>> path = 'C:\nowhere'
>>> path
'C:\nowhere'

This looks correct, until you print it and discover the flaw.

>>> print(path)
C:
owhere

It’s not exactly what we were after, is it? So what do we do? We can escape the backslash itself.

>>> print('C:\\nowhere')
C:\nowhere

This is just fine. But for long paths, you wind up with a lot of backslashes.

path = 'C:\\Program Files\\fnord\\foo\\bar\\baz\\frozz\\bozz'

Raw strings are useful in such cases. They don’t treat the backslash as a special character at all. Every
character you put into a raw string stays the way you wrote it.

10Raw strings can be especially useful when writing regular expressions. You learn more about those in Chapter 10.

Chapter 1 ■ Instant Hacking: The Basics

19

>>> print(r'C:\nowhere')
C:\nowhere
>>> print(r'C:\Program Files\fnord\foo\bar\baz\frozz\bozz')
C:\Program Files\fnord\foo\bar\baz\frozz\bozz

As you can see, raw strings are prefixed with an r. It would seem that you can put anything inside a raw
string, and that is almost true. Quotes must be escaped as usual, although that means you get a backslash in
your final string, too.

>>> print(r'Let\'s go!')

Let\'s go!

The one thing you can’t have in a raw string is a lone, final backslash. In other words, the last character in
a raw string cannot be a backslash unless you escape it (and then the backslash you use to escape it will be
part of the string, too). Given the previous example, that ought to be obvious. If the last character (before the
final quote) is an unescaped backslash, Python won’t know whether or not to end the string.

>>> print(r"This is illegal\")
SyntaxError: EOL while scanning string literal

Okay, so it’s reasonable, but what if you want the last character in your raw string to be a backslash? (Perhaps
it’s the end of a DOS path, for example.) Well, I’ve given you a whole bag of tricks in this section that should
help you solve that problem, but basically you need to put the backslash in a separate string. A simple way of
doing that is the following:

>>> print(r'C:\Program Files\foo\bar' '\\')
C:\Program Files\foo\bar\

Note that you can use both single and double quotes with raw strings. Even triple-quoted strings can be raw.

Unicode, bytes, and bytearray
Python strings represent text using a scheme known as Unicode. The way this works for most basic programs
is pretty transparent, so if you’d like, you could skip this section for now and read up on the topic as needed.
However, as string and text file handling is one of the main uses of Python code, it probably wouldn’t hurt to
at least skim this section.

Abstractly, each Unicode character is represented by a so-called code point, which is simply its number
in the Unicode standard. This allows you to refer to more than 120,000 characters in 129 writing systems in a
way that should be recognizable by any modern software. Of course, your keyboard won’t have hundreds of
thousands of keys, so there are general mechanisms for specifying Unicode characters, either by 16- or 32-bit
hexadecimal literals (prefixing them with \u or \U, respectively) or by their Unicode name (using \N{name}).

>>> "\u00C6"
'Æ'
>>> "\U0001F60A"
''
>>> "This is a cat: \N{Cat}"

'This is a cat: '

You can find the various code points and names by searching the Web, using a description of the character
you need, or you can use a specific site such as http://unicode-table.com.

http://unicode-table.com/

Chapter 1 ■ Instant Hacking: The Basics

20

The idea of Unicode is quite simple, but it comes with some challenges, one of which is the issue
of encoding. All objects are represented in memory or on disk as a series of binary digits—zeroes and
ones—grouped in chunks of eight, or bytes, and strings are no exception. In programming languages such
as C, these bytes are completely out in the open. Strings are simply sequences of bytes. To interoperate with
C, for example, and to write text to files or send it through network sockets, Python has two similar types,
the immutable bytes and the mutable bytearray. If you wanted, you could produce a bytes object directly,
instead of a string, by using the prefix b:

>>> b'Hello, world!'
b'Hello, world!'

However, a byte can hold only 256 values, quite a bit less than what the Unicode standard requires. Python
bytes literals permit only the 128 characters of the ASCII standard, with the remaining 128 byte values
requiring escape sequences like \xf0 for the hexadecimal value 0xf0 (that is, 240).

It might seem the only difference here is the size of the alphabet available to us. That’s not really
accurate, however. At a glance, it might seem like both ASCII and Unicode refer to a mapping between non-
negative integers and characters, but there is a subtle difference: where Unicode code points are defined as
integers, ASCII characters are defined both by their number and by their binary encoding. One reason this
seems completely unremarkable is that the mapping between the integers 0–255 and an eight-digit binary
numeral is completely standard, and there is little room to maneuver. The thing is, once we go beyond the
single byte, things aren’t that simple. The direct generalization of simply representing each code point as the
corresponding binary numeral may not be the way to go. Not only is there the issue of byte order, which one
bumps up against even when encoding integer values, there is also the issue of wasted space: if we use the
same number of bytes for encoding each code point, all text will have to accommodate the fact that you might
want to include a few Anatolian hieroglyphs or a smattering of Imperial Aramaic. There is a standard for such
an encoding of Unicode, which is called UTF-32 (for Unicode Transformation Format 32 bits), but if you’re
mainly handling text in one of the more common languages of the Internet, for example, this is quite wasteful.

There is an absolutely brilliant alternative, however, devised in large part by computing pioneer
Kenneth Thompson. Instead of using the full 32 bits, it uses a variable encoding, with fewer bytes for some
scripts than others. Assuming that you’ll use these scripts more often, this will save you space overall,
similar to how Morse code saves you effort by using fewer dots and dashes for the more common letters.11
In particular, the ASCII encoding is still used for single-byte encoding, retaining compatibility with older
systems. However, characters outside this range use multiple bytes (up to six). Let’s try to encode a string
into bytes, using the ASCII, UTF-8, and UTF-32 encodings.

>>> "Hello, world!".encode("ASCII")
b'Hello, world!'
>>> "Hello, world!".encode("UTF-8")
b'Hello, world!'
>>> "Hello, world!".encode("UTF-32")
b'\xff\xfe\x00\x00H\x00\x00\x00e\x00\x00\x00l\x00\x00\x00l\x00\x00\x00o\x00\x00\x00,\x00\
x00\x00 \x00\x00\x00w\x00\x00\x00o\x00\x00\x00r\x00\x00\x00l\x00\x00\x00d\x00\x00\x00!\x00\
x00\x00'

As you can see, the first two are equivalent, while the last one is quite a bit longer. Here’s another example:

>>> len("How long is this?".encode("UTF-8"))
17

11This is an important method of compression in general, used for example in Huffman coding, a component of several
modern compression tools.

Chapter 1 ■ Instant Hacking: The Basics

21

>>> len("How long is this?".encode("UTF-32"))
72

The difference between ASCII and UTF-8 appears once we use some slightly more exotic characters:

>>> "Hællå, wørld!".encode("ASCII")
Traceback (most recent call last):
 ...
UnicodeEncodeError: 'ascii' codec can't encode character '\xe6' in position 1: ordinal not
in range(128)

The Scandinavian letters here have no encoding in ASCII. If we really need ASCII encoding (which can
certainly happen), we can supply another argument to encode, telling it what to do with errors. The normal
mode here is 'strict', but there are others you can use to ignore or replace the offending characters.

>>> "Hællå, wørld!".encode("ASCII", "ignore")
b'Hll, wrld!'
>>> "Hællå, wørld!".encode("ASCII", "replace")
b'H?ll?, w?rld!'
>>> "Hællå, wørld!".encode("ASCII", "backslashreplace")
b'H\\xe6ll\\xe5, w\\xf8rld!'
>>> "Hællå, wørld!".encode("ASCII", "xmlcharrefreplace")
b'Hællå, wørld!'

In almost all cases, though, you’ll be better off using UTF-8, which is in fact even the default encoding.

>>> "Hællå, wørld!".encode()
b'H\xc3\xa6ll\xc3\xa5, w\xc3\xb8rld!'

This is slightly longer than for the "Hello, world!" example, whereas the UTF-32 encoding would be of
exactly the same length in both cases.

Just like strings can be encoded into bytes, bytes can be decoded into strings.

>>> b'H\xc3\xa6ll\xc3\xa5, w\xc3\xb8rld!'.decode()
'Hællå, wørld!'

As before, the default encoding is UTF-8. We can specify a different encoding, but if we use the wrong one,
we’ll either get an error message or end up with a garbled string. The bytes object itself doesn’t know about
encoding, so it’s your responsibility to keep track of which one you’ve used.

Rather than using the encode and decode methods, you might want to simply construct the bytes and
str (i.e., string) objects, as follows:

>>> bytes("Hællå, wørld!", encoding="utf-8")
b'H\xc3\xa6ll\xc3\xa5, w\xc3\xb8rld!'
>>> str(b'H\xc3\xa6ll\xc3\xa5, w\xc3\xb8rld!', encoding="utf-8")
'Hællå, wørld!'

Using this approach is a bit more general and works better if you don’t know exactly the class of the string-
like or bytes-like objects you’re working with—and as a general rule, you shouldn’t be too strict about that.

Chapter 1 ■ Instant Hacking: The Basics

22

One of the most important uses for encoding and decoding is when storing text in files on disk.
However, Python’s mechanisms for reading and writing files normally do the work for you! As long as you’re
okay with having your files in UTF-8 encoding, you don’t really need to worry about it. But if you end up
seeing gibberish where you expected text, perhaps the file was actually in some other encoding, and then it
can be useful to know a bit about what’s going on. If you’d like to know more about Unicode in Python, check
out the HOWTO on the subject.12

■■ Note  Your source code is also encoded, and the default there is UTF-8 as well. If you want to use some
other encoding (for example, if your text editor insists on saving as something other than UTF-8), you can
specify the encoding with a special comment.

-*- coding: encoding name -*-

Replace encoding name with whatever encoding you’re using (uppercase or lowercase), such as utf-8 or,
perhaps more likely, latin-1, for example.

Finally, we have bytearray, a mutable version of bytes. In a sense, it’s like a string where you can modify the
characters—which you can’t do with a normal string. However, it’s really designed more to be used behind
the scenes and isn’t exactly user-friendly if used as a string-alike. For example, to replace a character, you
have to assign an int in the range 0…255 to it. So if you want to actually insert a character, you have to get its
ordinal value, using ord.

>>> x = bytearray(b"Hello!")
>>> x[1] = ord(b"u")
>>> x
bytearray(b'Hullo!')

A Quick Summary
This chapter covered quite a bit of material. Let’s take a look at what you’ve learned before moving on.

Algorithms: An algorithm is a recipe telling you exactly how to perform a task.
When you program a computer, you are essentially describing an algorithm in
a language the computer can understand, such as Python. Such a machine-
friendly description is called a program, and it mainly consists of expressions and
statements.

Expressions: An expression is a part of a computer program that represents
a value. For example, 2 + 2 is an expression, representing the value 4. Simple
expressions are built from literal values (such as 2 or "Hello") by using operators
(such as + or %) and functions (such as pow). More complicated expressions
can be created by combining simpler expressions (e.g., (2 + 2) * (3 - 1)).
Expressions may also contain variables.

Variables: A variable is a name that represents a value. New values may be assigned
to variables through assignments such as x = 2. An assignment is a kind of statement.

12See https://docs.python.org/3/howto/unicode.html.

https://docs.python.org/3/howto/unicode.html

Chapter 1 ■ Instant Hacking: The Basics

23

Statements: A statement is an instruction that tells the computer to do
something. That may involve changing variables (through assignments), printing
things to the screen (such as print("Hello, world!")), importing modules, or
doing a host of other stuff.

Functions: Functions in Python work just like functions in mathematics: they
may take some arguments, and they return a result. (They may actually do lots
of interesting stuff before returning, as you will find out when you learn to write
your own functions in Chapter 6.)

Modules: Modules are extensions that can be imported into Python to extend its
capabilities. For example, several useful mathematical functions are available in
the math module.

Programs: You have looked at the practicalities of writing, saving, and running
Python programs.

Strings: Strings are really simple—they are just pieces of text, with characters
represented as Unicode code points. And yet there is a lot to know about them.
In this chapter, you’ve seen many ways to write them, and in Chapter 3 you learn
many ways of using them.

New Functions in This Chapter

Functions Description

abs(number) Returns the absolute value of a number.

bytes(string, encoding[, errors]) Encodes a given string, with the specified behavior for errors.

cmath.sqrt(number) Returns the square root; works with negative numbers.

float(object) Converts a string or number to a floating-point number.

help([object]) Offers interactive help.

input(prompt) Gets input from the user as a string.

int(object) Converts a string or number to an integer.

math.ceil(number) Returns the ceiling of a number as a float.

math.floor(number) Returns the floor of a number as a float.

math.sqrt(number) Returns the square root; doesn’t work with negative
numbers.

pow(x, y[, z]) Returns x to the power of y (modulo z).

print(object, ...) Prints out the arguments, separated by spaces.

repr(object) Returns a string representation of a value.

round(number[, ndigits]) Rounds a number to a given precision, with ties rounded to
the even number.

str(object) Converts a value to a string. If converting from bytes, you
may specify encoding and error behavior.

Arguments given in square brackets are optional.

http://dx.doi.org/10.1007/978-1-4842-0028-5_6
http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 1 ■ Instant Hacking: The Basics

24

What Now?
Now that you know the basics of expressions, let’s move on to something a bit more advanced: data
structures. Instead of dealing with simple values (such as numbers), you’ll see how to bunch them together
in more complex structures, such as lists and dictionaries. In addition, you’ll take another close look at
strings. In Chapter 5, you learn more about statements, and after that you’ll be ready to write some really
nifty programs.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

25© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_2

CHAPTER 2

Lists and Tuples

This chapter introduces a new concept: data structures. A data structure is a collection of data elements
(such as numbers or characters, or even other data structures) that is structured in some way, such as
by numbering the elements. The most basic data structure in Python is the sequence. Each element of a
sequence is assigned a number—its position, or index. The first index is zero, the second index is one, and
so forth. Some programming languages number their sequence elements starting with one, but the zero-
indexing convention has a natural interpretation of an offset from the beginning of the sequence, with
negative indexes wrapping around to the end. If you find the numbering a bit odd, I can assure you that
you’ll most likely get used to it pretty fast.

This chapter begins with an overview of sequences and then covers some operations that are common
to all sequences, including lists and tuples. These operations will also work with strings, which will be used in
some of the examples, although for a full treatment of string operations, you have to wait until the next chapter.
After dealing with these basics, we start working with lists and see what’s special about them. And after lists, we
come to tuples, a special-purpose type of sequence similar to lists, except that you can’t change them.

Sequence Overview
Python has several built-in types of sequences. This chapter concentrates on two of the most common ones:
lists and tuples. Strings are another important type, which I revisit in the next chapter.

The main difference between lists and tuples is that you can change a list, but you can’t change a tuple.
This means a list might be useful if you need to add elements as you go along, while a tuple can be useful if,
for some reason, you can’t allow the sequence to change. Reasons for the latter are usually rather technical,
having to do with how things work internally in Python. That’s why you may see built-in functions returning
tuples. For your own programs, chances are you can use lists instead of tuples in almost all circumstances.
(One notable exception, as described in Chapter 4, is using tuples as dictionary keys. There lists aren’t
allowed, because you aren’t allowed to modify keys.)

Sequences are useful when you want to work with a collection of values. You might have a sequence
representing a person in a database, with the first element being their name and the second their age.
Written as a list (the items of a list are separated by commas and enclosed in square brackets), that would
look like this:

>>> edward = ['Edward Gumby', 42]

But sequences can contain other sequences, too, so you could make a list of such persons, which would be
your database.

>>> edward = ['Edward Gumby', 42]
>>> john = ['John Smith', 50]

http://dx.doi.org/10.1007/978-1-4842-0028-5_4

Chapter 2 ■ Lists and Tuples

26

>>> database = [edward, john]
>>> database
[['Edward Gumby', 42], ['John Smith', 50]]

■■ Note  Python has a basic notion of a kind of data structure called a container, which is basically any object
that can contain other objects. The two main kinds of containers are sequences (such as lists and tuples) and
mappings (such as dictionaries). While the elements of a sequence are numbered, each element in a mapping
has a name (also called a key). You learn more about mappings in Chapter 4. For an example of a container type
that is neither a sequence nor a mapping, see the discussion of sets in Chapter 10.

Common Sequence Operations
There are certain things you can do with all sequence types. These operations include indexing, slicing,
adding, multiplying, and checking for membership. In addition, Python has built-in functions for finding the
length of a sequence and for finding its largest and smallest elements.

■■ Note  One important operation not covered here is iteration. To iterate over a sequence means to perform
certain actions repeatedly, once per element in the sequence. To learn more about this, see the section “Loops”
in Chapter 5.

Indexing
All elements in a sequence are numbered—from zero and upward. You can access them individually with a
number, like this:

>>> greeting = 'Hello'
>>> greeting[0]
'H'

■■ Note  A string is just a sequence of characters. The index 0 refers to the first element, in this case the
letter H. Unlike some other languages, there is no separate character type, though. A character is just a single-
element string.

This is called indexing. You use an index to fetch an element. All sequences can be indexed in this way.
When you use a negative index, Python counts from the right, that is, from the last element. The last element
is at position –1.

>>> greeting[-1]
'o'

http://dx.doi.org/10.1007/978-1-4842-0028-5_4
http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 2 ■ Lists and Tuples

27

String literals (and other sequence literals, for that matter) may be indexed directly, without using a variable
to refer to them. The effect is exactly the same.

>>> 'Hello'[1]
'e'

If a function call returns a sequence, you can index it directly. For instance, if you are simply interested in the
fourth digit in a year entered by the user, you could do something like this:

>>> fourth = input('Year: ')[3]
Year: 2005
>>> fourth
'5'

Listing 2-1 contains a sample program that asks you for a year, a month (as a number from 1 to 12), and a day
(1 to 31), and then prints out the date with the proper month name and so on.

Listing 2-1.  Indexing Example

Print out a date, given year, month, and day as numbers

months = [
 'January',
 'February',
 'March',
 'April',
 'May',
 'June',
 'July',
 'August',
 'September',
 'October',
 'November',
 'December'
]

A list with one ending for each number from 1 to 31
endings = ['st', 'nd', 'rd'] + 17 * ['th'] \
 + ['st', 'nd', 'rd'] + 7 * ['th'] \
 + ['st']

year = input('Year: ')
month = input('Month (1-12): ')
day = input('Day (1-31): ')

month_number = int(month)
day_number = int(day)

Remember to subtract 1 from month and day to get a correct index
month_name = months[month_number-1]
ordinal = day + endings[day_number-1]

print(month_name + ' ' + ordinal + ', ' + year)

Chapter 2 ■ Lists and Tuples

28

An example of a session with this program might be as follows:

Year: 1974
Month (1-12): 8
Day (1-31): 16
August 16th, 1974

The last line is the output from the program.

Slicing
Just as you use indexing to access individual elements, you can use slicing to access ranges of elements. You
do this by using two indices, separated by a colon.

>>> tag = 'Python web site'
>>> tag[9:30]
'http://www.python.org'
>>> tag[32:-4]
'Python web site'

As you can see, slicing is useful for extracting parts of a sequence. The numbering here is very important.
The first index is the number of the first element you want to include. However, the last index is the number
of the first element after your slice. Consider the following:

>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numbers[3:6] [4, 5, 6]
>>> numbers[0:1] [1]

In short, you supply two indices as limits for your slice, where the first is inclusive and the second is exclusive.

A Nifty Shortcut
Let’s say you want to access the last three elements of numbers (from the previous example). You could do it
explicitly, of course.

>>> numbers[7:10]
[8, 9, 10]

Now, the index 10 refers to element 11—which does not exist but is one step after the last element you want.
Got it? If you want to count from the end, you use negative indices.

>>> numbers[-3:-1]
[8, 9]

However, it seems you cannot access the last element this way. How about using 0 as the element “one step
beyond” the end?

>>> numbers[-3:0]
[]

Chapter 2 ■ Lists and Tuples

29

It’s not exactly the desired result. In fact, any time the leftmost index in a slice comes later in the sequence
than the second one (in this case, the third-to-last coming later than the first), the result is always an empty
sequence. Luckily, you can use a shortcut: if the slice continues to the end of the sequence, you may simply
leave out the last index.

>>> numbers[-3:]
[8, 9, 10]

The same thing works from the beginning.

>>> numbers[:3]
[1, 2, 3]

In fact, if you want to copy the entire sequence, you may leave out both indices.

>>> numbers[:]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Listing 2-2 contains a small program that prompts you for a URL and (assuming it is of the rather limited
form http://www.somedomainname.com) extracts the domain name.

Listing 2-2.  Slicing Example

Split up a URL of the form http://www.something.com

url = input('Please enter the URL:')
domain = url[11:-4]

print("Domain name: " + domain)

Here is a sample run of the program:

Please enter the URL: http://www.python.org
Domain name: python

Longer Steps
When slicing, you specify (either explicitly or implicitly) the start and end points of the slice. Another parameter,
which normally is left implicit, is the step length. In a regular slice, the step length is one, which means that the
slice “moves” from one element to the next, returning all the elements between the start and end.

>>> numbers[0:10:1]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In this example, you can see that the slice includes another number. This is, as you may have guessed, the
step size, made explicit. If the step size is set to a number greater than one, elements will be skipped. For
example, a step size of two will include only every other element of the interval between the start and the
end.

>>> numbers[0:10:2]
[1, 3, 5, 7, 9]
numbers[3:6:3]
[4]

http://www.somedomainname.com/

Chapter 2 ■ Lists and Tuples

30

You can still use the shortcuts mentioned earlier. For example, if you want every fourth element of a
sequence, you need to supply only a step size of four.

>>> numbers[::4]
[1, 5, 9]

Naturally, the step size can’t be zero—that wouldn’t get you anywhere—but it can be negative, which means
extracting the elements from right to left.

>>> numbers[8:3:-1]
[9, 8, 7, 6, 5]
>>> numbers[10:0:-2]
[10, 8, 6, 4, 2]
>>> numbers[0:10:-2]
[]
>>> numbers[::-2]
[10, 8, 6, 4, 2]
>>> numbers[5::-2]
[6, 4, 2]
>>> numbers[:5:-2]
[10, 8]

Getting things right here can involve a bit of thinking. As you can see, the first limit (the leftmost) is still
inclusive, while the second (the rightmost) is exclusive. When using a negative step size, you need to have a
first limit (start index) that is higher than the second one. What may be a bit confusing is that when you leave
the start and end indices implicit, Python does the “right thing”—for a positive step size, it moves from the
beginning toward the end, and for a negative step size, it moves from the end toward the beginning.

Adding Sequences
Sequences can be concatenated with the addition (plus) operator.

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> 'Hello,' + 'world!'
'Hello, world!'
>>> [1, 2, 3] + 'world!'
Traceback (innermost last):
 File "<pyshell>", line 1, in ?
 [1, 2, 3] + 'world!'
TypeError: can only concatenate list (not "string") to list

As you can see from the error message, you can’t concatenate a list and a string, although both are
sequences. In general, you cannot concatenate sequences of different types.

Chapter 2 ■ Lists and Tuples

31

Multiplication
Multiplying a sequence by a number x creates a new sequence where the original sequence is repeated x times:

>>> 'python' * 5
'pythonpythonpythonpythonpython'
>>> [42] * 10
[42, 42, 42, 42, 42, 42, 42, 42, 42, 42]

None, Empty Lists, and Initialization
An empty list is simply written as two brackets ([])—there’s nothing in it. If you want to have a list with room
for ten elements but with nothing useful in it, you could use [42]*10, as before, or perhaps more realistically
[0]*10. You now have a list with ten zeros in it. Sometimes, however, you would like a value that somehow
means “nothing,” as in “we haven’t put anything here yet.” That’s when you use None. None is a Python value
and means exactly that—“nothing here.” So if you want to initialize a list of length 10, you could do the following:

>>> sequence = [None] * 10
>>> sequence
[None, None, None, None, None, None, None, None, None, None]

Listing 2-3 contains a program that prints (to the screen) a “box” made up of characters, which is centered
on the screen and adapted to the size of a sentence supplied by the user. The code may look complicated,
but it’s basically just arithmetic—figuring out how many spaces, dashes, and so on, you need in order to
place things correctly.

Listing 2-3.  Sequence (String) Multiplication Example

Prints a sentence in a centered "box" of correct width

sentence = input("Sentence: ")

screen_width = 80
text_width = len(sentence)
box_width = text_width + 6
left_margin = (screen_width - box_width) // 2

print()
print(' ' * left_margin + '+' + '-' * (box_width-2) + '+')
print(' ' * left_margin + '| ' + ' ' * text_width + ' |')
print(' ' * left_margin + '| ' + sentence + ' |')
print(' ' * left_margin + '| ' + ' ' * text_width + ' |')
print(' ' * left_margin + '+' + '-' * (box_width-2) + '+')
print()

Chapter 2 ■ Lists and Tuples

32

The following is a sample run:

Sentence: He's a very naughty boy!

 +-----------------------------+
 | |
 | He's a very naughty boy! |
 | |
 +-----------------------------+

Membership
To check whether a value can be found in a sequence, you use the in operator. This operator is a bit different
from the ones discussed so far (such as multiplication or addition). It checks whether something is true and
returns a value accordingly: True for true and False for false. Such operators are called Boolean operators,
and the truth values are called Boolean values. You learn more about Boolean expressions in the section on
conditional statements in Chapter 5.

Here are some examples that use the in operator:

>>> permissions = 'rw'
>>> 'w' in permissions
True
>>> 'x' in permissions
False
>>> users = ['mlh', 'foo', 'bar']
>>> input('Enter your user name: ') in users
Enter your user name: mlh
True
>>> subject = '$$$ Get rich now!!! $$$'
>>> '$$$' in subject
True

The first two examples use the membership test to check whether 'w' and 'x', respectively, are found
in the string permissions. This could be a script on a UNIX machine checking for writing and execution
permissions on a file. The next example checks whether a supplied user name (mlh) is found in a list of users.
This could be useful if your program enforces some security policy. (In that case, you would probably want
to use passwords as well.) The last example checks whether the string subject contains the string '$$$'.
This might be used as part of a spam filter, for example.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 2 ■ Lists and Tuples

33

■■ Note  The example that checks whether a string contains '$$$' is a bit different from the others. In general, the
in operator checks whether an object is a member (that is, an element) of a sequence (or some other collection).
However, the only members or elements of a string are its characters. So, the following makes perfect sense:

>>> 'P' in 'Python'

True

In fact, in earlier versions of Python this was the only membership check that worked with strings—finding
out whether a character is in a string. Nowadays, you can use the in operator to check whether any string is a
substring of another.

Listing 2-4 shows a program that reads in a user name and checks the entered PIN code against a database
(a list, actually) that contains pairs (more lists) of names and PIN codes. If the name/PIN pair is found in the
database, the string 'Access granted' is printed. (The if statement was mentioned in Chapter 1 and will be
fully explained in Chapter 5.)

Listing 2-4.  Sequence Membership Example

Check a user name and PIN code

database = [
 ['albert', '1234'],
 ['dilbert', '4242'],
 ['smith', '7524'],
 ['jones', '9843']
]

username = input('User name: ')
pin = input('PIN code: ')

if [username, pin] in database: print('Access granted')

Length, Minimum, and Maximum
The built-in functions len, min, and max can be quite useful. The function len returns the number of elements
a sequence contains. min and max return the smallest and largest elements of the sequence, respectively. (You
learn more about comparing objects in Chapter 5, in the section “Comparison Operators.”)

>>> numbers = [100, 34, 678]
>>> len(numbers)
3
>>> max(numbers)
678
>>> min(numbers)
34
>>> max(2, 3)
3
>>> min(9, 3, 2, 5)
2

http://dx.doi.org/10.1007/978-1-4842-0028-5_1
http://dx.doi.org/10.1007/978-1-4842-0028-5_5
http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 2 ■ Lists and Tuples

34

How this works should be clear from the previous explanation, except possibly the last two expressions. In
those, max and min are not called with a sequence argument; the numbers are supplied directly as arguments.

Lists: Python’s Workhorse
In the previous examples, I’ve used lists quite a bit. You’ve seen how useful they are, but this section deals
with what makes them different from tuples and strings: lists are mutable—that is, you can change their
contents—and they have many useful specialized methods.

The list Function
Because strings can’t be modified in the same way as lists, sometimes it can be useful to create a list from a
string. You can do this with the list function.1

>>> list('Hello')
['H', 'e', 'l', 'l', 'o']

Note that list works with all kinds of sequences, not just strings.

■■ Tip  To convert a list of characters such as the preceding code back to a string, you would use the
following expression:

''.join(somelist)

where somelist is your list. For an explanation of what this really means, see the section about join in Chapter 3.

Basic List Operations
You can perform all the standard sequence operations on lists, such as indexing, slicing, concatenating,
and multiplying. But the interesting thing about lists is that they can be modified. In this section, you’ll see
some of the ways you can change a list: item assignments, item deletion, slice assignments, and list methods.
(Note that not all list methods actually change their list.)

Changing Lists: Item Assignments
Changing a list is easy. You just use ordinary assignment as explained in Chapter 1. However, instead of
writing something like x = 2, you use the indexing notation to assign to a specific, existing position, such as
x[1] = 2.

>>> x = [1, 1, 1]
>>> x[1] = 2
>>> x
[1, 2, 1]

1It’s actually a class, not a function, but the difference isn’t important right now.

http://dx.doi.org/10.1007/978-1-4842-0028-5_3
http://dx.doi.org/10.1007/978-1-4842-0028-5_1

Chapter 2 ■ Lists and Tuples

35

■■ Note  You cannot assign to a position that doesn’t exist; if your list is of length 2, you cannot assign a value
to index 100. To do that, you would have to make a list of length 101 (or more). See the section “None, Empty
Lists, and Initialization” earlier in this chapter.

Deleting Elements
Deleting elements from a list is easy, too. You can simply use the del statement.

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']
>>> del names[2]
>>> names
['Alice', 'Beth', 'Dee-Dee', 'Earl']

Notice how Cecil is completely gone, and the length of the list has shrunk from five to four. The del
statement may be used to delete things other than list elements. It can be used with dictionaries
(see Chapter 4) or even variables. For more information, see Chapter 5.

Assigning to Slices
Slicing is a very powerful feature, and it is made even more powerful by the fact that you can assign to slices.

>>> name = list('Perl')
>>> name
['P', 'e', 'r', 'l']
>>> name[2:] = list('ar')
>>> name
['P', 'e', 'a', 'r']

So you can assign to several positions at once. You may wonder what the big deal is. Couldn’t you just have
assigned to them one at a time? Sure, but when you use slice assignments, you may also replace the slice
with a sequence whose length is different from that of the original.

>>> name = list('Perl')
>>> name[1:] = list('ython')
>>> name
['P', 'y', 't', 'h', 'o', 'n']

Slice assignments can even be used to insert elements without replacing any of the original ones.

>>> numbers = [1, 5]
>>> numbers[1:1] = [2, 3, 4]
>>> numbers
[1, 2, 3, 4, 5]

http://dx.doi.org/10.1007/978-1-4842-0028-5_4
http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 2 ■ Lists and Tuples

36

Here, I basically “replaced” an empty slice, thereby really inserting a sequence. You can do the reverse to
delete a slice.

>>> numbers
[1, 2, 3, 4, 5]
>>> numbers[1:4] = []
>>> numbers
[1, 5]

As you may have guessed, this last example is equivalent to del numbers[1:4]. (Now why don’t you try a
slice assignment with a step size different from 1? Perhaps even a negative one?)

List Methods
A method is a function that is tightly coupled to some object, be it a list, a number, a string, or whatever. In
general, a method is called like this:

object.method(arguments)

A method call looks just like a function call, except that the object is put before the method name, with a dot
separating them. (You get a much more detailed explanation of what methods really are in Chapter 7.) Lists
have several methods that allow you to examine or modify their contents.

append
The append method is used to append an object to the end of a list.

>>> lst = [1, 2, 3]
>>> lst.append(4)
>>> lst
[1, 2, 3, 4]

You might wonder why I have chosen such an ugly name as lst for my list. Why not call it list? I could do
that, but as you might remember, list is a built-in function.2 If I use the name for a list instead, I won’t be
able to call the function anymore. You can generally find better names for a given application. A name such
as lst really doesn’t tell you anything. So if your list is a list of prices, for instance, you probably ought to call
it something like prices, prices_of_eggs, or pricesOfEggs.

It’s also important to note that append, like several similar methods, changes the list in place. This
means that it does not simply return a new, modified list; instead, it modifies the old one directly. This is
usually what you want, but it may sometimes cause trouble. I’ll return to this discussion when I describe
sort later in the chapter.

2Actually, from version 2.2 of Python, list is a type, not a function. (This is the case with tuple and str as well.) For
the full story on this, see the section “Subclassing list, dict, and str” in Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 2 ■ Lists and Tuples

37

clear
The clear method clears the contents of a list, in place.

>>> lst = [1, 2, 3]
>>> lst.clear()
>>> lst
[]

It’s similar to the slice assignment lst[:] = [].

copy
The copy method copies a list. Recall that a normal assignment simply binds another name to the same list.

>>> a = [1, 2, 3]
>>> b = a
>>> b[1] = 4
>>> a
[1, 4, 3]

If you want a and b to be separate lists, you have to bind b to a copy of a.

>>> a = [1, 2, 3]
>>> b = a.copy()
>>> b[1] = 4
>>> a
[1, 2, 3]

It’s similar to using a[:] or list(a), both of which will also copy a.

count
The count method counts the occurrences of an element in a list.

>>> ['to', 'be', 'or', 'not', 'to', 'be'].count('to')
2
>>> x = [[1, 2], 1, 1, [2, 1, [1, 2]]]
>>> x.count(1)
2
>>> x.count([1, 2])
1

extend
The extend method allows you to append several values at once by supplying a sequence of the values you
want to append. In other words, your original list has been extended by the other one.

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a.extend(b)

Chapter 2 ■ Lists and Tuples

38

>>> a
[1, 2, 3, 4, 5, 6]

This may seem similar to concatenation, but the important difference is that the extended sequence (in this
case, a) is modified. This is not the case in ordinary concatenation, in which a completely new sequence is
returned.

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a + b
[1, 2, 3, 4, 5, 6]
>>> a
[1, 2, 3]

As you can see, the concatenated list looks exactly the same as the extended one in the previous example, yet
a hasn’t changed this time. Because ordinary concatenation must make a new list that contains copies of a
and b, it isn’t quite as efficient as using extend if what you want is something like this:

>>> a = a + b

Also, this isn’t an in-place operation—it won’t modify the original. The effect of extend can be achieved by
assigning to slices, as follows:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a[len(a):] = b
>>> a
[1, 2, 3, 4, 5, 6]

While this works, it isn’t quite as readable.

index
The index method is used for searching lists to find the index of the first occurrence of a value.

>>> knights = ['We', 'are', 'the', 'knights', 'who', 'say', 'ni']
>>> knights.index('who')
4
>>> knights.index('herring')
Traceback (innermost last):
 File "<pyshell>", line 1, in ?
 knights.index('herring')
ValueError: list.index(x): x not in list

When you search for the word 'who', you find that it’s located at index 4.

>>> knights[4]
'who'

However, when you search for 'herring', you get an exception because the word is not found at all.

Chapter 2 ■ Lists and Tuples

39

insert
The insert method is used to insert an object into a list.

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers.insert(3, 'four')
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

As with extend, you can implement insert with slice assignments.

>>> numbers = [1, 2, 3, 5, 6, 7]
>>> numbers[3:3] = ['four']
>>> numbers
[1, 2, 3, 'four', 5, 6, 7]

This may be fancy, but it is hardly as readable as using insert.

pop
The pop method removes an element (by default, the last one) from the list and returns it.

>>> x = [1, 2, 3]
>>> x.pop()
3
>>> x
[1, 2]
>>> x.pop(0)
1
>>> x
[2]

■■ Note  The pop method is the only list method that both modifies the list and returns a value (other than None).

Using pop, you can implement a common data structure called a stack. A stack like this works just like a stack
of plates. You can put plates on top, and you can remove plates from the top. The last one you put into the
stack is the first one to be removed. (This principle is called last-in, first-out, or LIFO.)

The generally accepted names for the two stack operations (putting things in and taking them out) are
push and pop. Python doesn’t have push, but you can use append instead. The pop and append methods reverse
each other’s results, so if you push (or append) the value you just popped, you end up with the same stack.

>>> x = [1, 2, 3]
>>> x.append(x.pop())
>>> x
[1, 2, 3]

■■ Tip  If you want a first-in, first-out (FIFO) queue, you can use insert(0, ...) instead of append.
Alternatively, you could keep using append but substitute pop(0) for pop(). An even better solution would be to
use a deque from the collections module. See Chapter 10 for more information.

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 2 ■ Lists and Tuples

40

remove
The remove method is used to remove the first occurrence of a value.

>>> x = ['to', 'be', 'or', 'not', 'to', 'be']
>>> x.remove('be')
>>> x
['to', 'or', 'not', 'to', 'be']
>>> x.remove('bee')
Traceback (innermost last):
 File "<pyshell>", line 1, in ?
 x.remove('bee')
ValueError: list.remove(x): x not in list

As you can see, only the first occurrence is removed, and you cannot remove something (in this case, the
string 'bee') if it isn’t in the list to begin with.

It’s important to note that this is one of the “nonreturning in-place changing” methods. It modifies the
list but returns nothing (as opposed to pop).

reverse
The reverse method reverses the elements in the list. (That’s not very surprising, I guess.)

>>> x = [1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]

Note that reverse changes the list and does not return anything (just like remove and sort, for example).

■■ Tip  If you want to iterate over a sequence in reverse, you can use the reversed function. This function
doesn’t return a list, though; it returns an iterator. (You learn more about iterators in Chapter 9.) You can convert
the returned object with list.

>>> x = [1, 2, 3]

>>> list(reversed(x))

[3, 2, 1]

sort
The sort method is used to sort lists in place.3 Sorting “in place” means changing the original list so its
elements are in sorted order, rather than simply returning a sorted copy of the list.

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort()
>>> x
[1, 2, 4, 6, 7, 9]

3In case you’re interested, from Python 2.3 on, the sort method uses a stable sorting algorithm.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 2 ■ Lists and Tuples

41

You’ve encountered several methods already that modify the list without returning anything, and in most cases
that behavior is quite natural (as with append, for example). But I want to emphasize this behavior in the case
of sort because so many people seem to be confused by it. The confusion usually occurs when users want a
sorted copy of a list while leaving the original alone. An intuitive (but wrong) way of doing this is as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x.sort() # Don't do this!
>>> print(y)
None

Because sort modifies x but returns nothing, you end up with a sorted x and a y containing None. One
correct way of doing this would be to first bind y to a copy of x and then sort y, as follows:

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = x.copy()
>>> y.sort()
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

Simply assigning x to y wouldn’t work because both x and y would refer to the same list. Another way of
getting a sorted copy of a list is using the sorted function.

>>> x = [4, 6, 2, 1, 7, 9]
>>> y = sorted(x)
>>> x
[4, 6, 2, 1, 7, 9]
>>> y
[1, 2, 4, 6, 7, 9]

This function can actually be used on any sequence but will always return a list.4

>>> sorted('Python')
['P', 'h', 'n', 'o', 't', 'y']

If you want to sort the elements in reverse order, you can use sort (or sorted), followed by a call to the
reverse method, or you could use the reverse argument, described in the following section.

Advanced Sorting
The sort method takes two optional arguments: key and reverse. If you want to use them, you normally
specify them by name (so-called keyword arguments; you learn more about those in Chapter 6). The
key argument is similar to the cmp argument: you supply a function, and it’s used in the sorting process.
However, instead of being used directly for determining whether one element is smaller than another, the
function is used to create a key for each element, and the elements are sorted according to these keys. So, for
example, if you want to sort the elements according to their lengths, you use len as the key function.

4The sorted function can, in fact, be used on any iterable object. You learn more about iterable objects in Chapter 9.

http://dx.doi.org/10.1007/978-1-4842-0028-5_6
http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 2 ■ Lists and Tuples

42

>>> x = ['aardvark', 'abalone', 'acme', 'add', 'aerate']
>>> x.sort(key=len)
>>> x
['add', 'acme', 'aerate', 'abalone', 'aardvark']

The other keyword argument, reverse, is simply a truth value (True or False; you’ll learn more about these
in Chapter 5) indicating whether the list should be sorted in reverse.

>>> x = [4, 6, 2, 1, 7, 9]
>>> x.sort(reverse=True)
>>> x
[9, 7, 6, 4, 2, 1]

The key and reverse arguments are available in the sorted function as well. In many cases, using a custom
functions for key will be useful. You learn how to define your own functions in Chapter 6.

■■ Tip  If you would like to read more about sorting, you may want to check out the “Sorting Mini-HOW TO,”
found at https://wiki.python.org/moin/HowTo/Sorting.

Tuples: Immutable Sequences
Tuples are sequences, just like lists. The only difference is that tuples can’t be changed. (As you may have
noticed, this is also true of strings.) The tuple syntax is simple—if you separate some values with commas,
you automatically have a tuple.

>>> 1, 2, 3
(1, 2, 3)

As you can see, tuples may also be (and often are) enclosed in parentheses.

>>> (1, 2, 3)
(1, 2, 3)

The empty tuple is written as two parentheses containing nothing.

>>> ()
()

So, you may wonder how to write a tuple containing a single value. This is a bit peculiar—you have to include
a comma, even though there is only one value.

>>> 42
42
>>> 42,
(42,)
>>> (42,)
(42,)

http://dx.doi.org/10.1007/978-1-4842-0028-5_5
http://dx.doi.org/10.1007/978-1-4842-0028-5_6
https://wiki.python.org/moin/HowTo/Sorting

Chapter 2 ■ Lists and Tuples

43

The last two examples produce tuples of length one, while the first is not a tuple at all. The comma is crucial.
Simply adding parentheses won’t help: (42) is exactly the same as 42. One lonely comma, however, can
change the value of an expression completely.

>>> 3 * (40 + 2)
126
>>> 3 * (40 + 2,)
(42, 42, 42)

The tuple function works in pretty much the same way as list: it takes one sequence argument and
converts it to a tuple.5 If the argument is already a tuple, it is returned unchanged.

>>> tuple([1, 2, 3])
(1, 2, 3)
>>> tuple('abc')
('a', 'b', 'c')
>>> tuple((1, 2, 3))
(1, 2, 3)

As you may have gathered, tuples aren’t very complicated—and there isn’t really much you can do with
them except create them and access their elements, and you do this the same as with other sequences.

>>> x = 1, 2, 3
>>> x[1]
2
>>> x[0:2]
(1, 2)

Slices of a tuple are also tuples, just as list slices are themselves lists.

There are two important reasons why you need to know about tuples.

•	 They can be used as keys in mappings (and members of sets); lists can’t be used this
way. You’ll learn more mappings in Chapter 4.

•	 They are returned by some built-in functions and methods, which means that you
have to deal with them. As long as you don’t try to change them, “dealing” with them
most often means treating them just like lists (unless you need methods such as
index and count, which tuples don’t have).

In general, lists will probably be adequate for your sequencing needs.

5Like list, tuple isn’t really a function—it’s a type. And, as with list, you can safely ignore this for now.

http://dx.doi.org/10.1007/978-1-4842-0028-5_4

Chapter 2 ■ Lists and Tuples

44

A Quick Summary
Let’s review some of the most important concepts covered in this chapter.

Sequences: A sequence is a data structure in which the elements are numbered
(starting with zero). Examples of sequence types are lists, strings, and tuples.
Of these, lists are mutable (you can change them), whereas tuples and strings
are immutable (once they’re created, they’re fixed). Parts of a sequence can
be accessed through slicing, supplying two indices that indicate the starting
and ending positions of the slice. To change a list, you assign new values to its
positions or use assignment to overwrite entire slices.

Membership: Whether a value can be found in a sequence (or other container)
is checked with the operator in. Using in with strings is a special case—it will let
you look for substrings.

Methods: Some of the built-in types (such as lists and strings but not tuples)
have many useful methods attached to them. These are a bit like functions,
except that they are tied closely to a specific value. Methods are an important
aspect of object-oriented programming, which we look at in Chapter 7.

New Functions in This Chapter

Function Description

len(seq) Returns the length of a sequence

list(seq) Converts a sequence to a list

max(args) Returns the maximum of a sequence or set of arguments

min(args) Returns the minimum of a sequence or set of arguments

reversed(seq) Lets you iterate over a sequence in reverse

sorted(seq) Returns a sorted list of the elements of seq

tuple(seq) Converts a sequence to a tuple

What Now?
Now that you’re acquainted with sequences, let’s move on to character sequences, also known as strings.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

45© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_3

CHAPTER 3

Working with Strings

You’ve seen strings before and know how to make them. You’ve also looked at how to access their individual
characters by indexing and slicing. In this chapter, you see how to use them to format other values (for
printing, for example) and take a quick look at the useful things you can do with string methods, such as
splitting, joining, searching, and more.

Basic String Operations
All the standard sequence operations (indexing, slicing, multiplication, membership, length, minimum,
and maximum) work with strings, as you saw in the previous chapter. Remember, however, that strings are
immutable, so all kinds of item or slice assignments are illegal.

>>> website = 'http://www.python.org'
>>> website[-3:] = 'com'
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in ?
 website[-3:] = 'com'
TypeError: object doesn't support slice assignment

String Formatting: The Short Version
If you are new to Python programming, chances are you won’t need all the options that are available in
Python string formatting, so I’ll give you the short version here. If you are interested in the details, take a look
at the section “String Formatting: The Long Version,” which follows. Otherwise, just read this and skip to the
section “String Methods.”

Formatting values as strings is such an important operation, and one that has to cater to such a diverse
set of requirements, that several approaches have been added to the language over the years. Historically,
the main solution was to use the (aptly named) string formatting operator, the percent sign. The behavior of
this operator emulates the classic printf function from the C language. To the left of the %, you place a string
(the format string); to the right of it, you place the value you want to format. You can use a single value such
as a string or a number, you can use a tuple of values (if you want to format more than one), or, as I discuss in
the next chapter, you can use a dictionary. The most common case is the tuple.

>>> format = "Hello, %s. %s enough for ya?"
>>> values = ('world', 'Hot')
>>> format % values
'Hello, world. Hot enough for ya?'

Chapter 3 ■ Working with Strings

46

The %s parts of the format string are called conversion specifiers. They mark the places where the values are
to be inserted. The s means that the values should be formatted as if they were strings; if they aren’t, they’ll
be converted with str. Other specifiers lead to other forms of conversion; for example, %.3f will format the
value as a floating-point number with three decimals.

This formatting method still works, and is still very much alive in a lot of code out there, so you might
run into it. Another solution you may encounter is so-called template strings, which appeared a while back
as an attempt to simplify the basic formatting mechanism, using a syntax similar to UNIX shells, for example.

>>> from string import Template
>>> tmpl = Template("Hello, $who! $what enough for ya?")
>>> tmpl.substitute(who="Mars", what="Dusty")
'Hello, Mars! Dusty enough for ya?'

The arguments with the equal signs in them are so-called keyword arguments—you’ll hear a lot about those
in Chapter 6. In the context of string formatting, you can just think of them as a way of supplying values to
named replacement fields.

When writing new code, the mechanism of choice is the format string method, which combines and
extends the strong points of the earlier methods. Each replacement field is enclosed in curly brackets and
may include a name, as well as information on how to convert and format the value supplied for that field.

The simplest case is where the fields have no name, or where each name is just an index.

>>> "{}, {} and {}".format("first", "second", "third")
'first, second and third'
>>> "{0}, {1} and {2}".format("first", "second", "third")
'first, second and third'

The indices need not be in order like this, though.

>>> "{3} {0} {2} {1} {3} {0}".format("be", "not", "or", "to")
'to be or not to be'

Named fields work just as expected.

>>> from math import pi
>>> "{name} is approximately {value:.2f}.".format(value=pi, name="π")
'π is approximately 3.14.'

The ordering of the keyword arguments does not matter, of course. In this case, I have also supplied a format
specifier of .2f, separated from the field name by a colon, meaning we want float-formatting with three
decimals. Without the specified, the result would be as follows:

>>> "{name} is approximately {value}.".format(value=pi, name="π")
'π is approximately 3.141592653589793.'

Finally, in Python 3.6, there’s a shortcut you can use if you have variables named identically to
corresponding replacement fields. In that case, you can use so-called f-strings, written with the prefix f.

>>> from math import e
>>> f"Euler's constant is roughly {e}."
"Euler's constant is roughly 2.718281828459045."

http://dx.doi.org/10.1007/978-1-4842-0028-5_6

Chapter 3 ■ Working with Strings

47

Here, the replacement field named e simply extracts the value of the variable of the same name, as the string
is being constructed. This is equivalent to the following, slightly more explicit expression:

>>> "Euler's constant is roughly {e}.".format(e=e)
"Euler's constant is roughly 2.718281828459045."

String Formatting: The Long Version
The string formatting facilities are extensive, so even this long version falls short of a complete exploration
of all its details, but let’s take a look at the main components. The idea is that we call the format method on
a string, supplying it with values that we want to format. The string contains information on how to perform
this formatting, specified in a template mini-language. Each value is spliced into the string in one of several
replacement fields, each of which is enclosed in curly braces. If you want to include literal braces in the final
result, you can specify those by using double braces in the format string, that is, {{ or }}.

>>> "{{ceci n'est pas une replacement field}}".format()
"{ceci n'est pas une replacement field}"

The most exciting part of a format string is found in the guts of the replacement fields, consisting of the
following parts, all of which are optional:

•	 A field name. An index or identifier. This tells us which value will be formatted and
spliced into this specific field. In addition to naming the object itself, we may also
name a specific part of the value, such as an element of a list, for example.

•	 A conversion flag. An exclamation mark, followed by a single character. The
currently supported ones are r (for repr), s (for str), or a (for ascii). If supplied,
this flag overrides the object’s own formatting mechanisms and uses the specified
function to turn it into a string before any further formatting.

•	 A format specifier. A colon, followed by an expression in the format specification
mini-language. This lets us specify details of the final formatting, including the
type of formatting (for example, string, floating-point or hexadecimal number), the
width of the field and the precision of numbers, how to display signs and thousands
separators, and various forms of alignment and padding.

Let’s look at some of these elements in a bit more detail.

Replacement Field Names
In the simplest case, you just supply unnamed arguments to format and use unnamed fields in the format
string. The fields and arguments are then paired off in the order they are given. You can also provide the
arguments with names, which is then used in replacement fields to request these specific values. The two
strategies may be mixed freely.

>>> "{foo} {} {bar} {}".format(1, 2, bar=4, foo=3)
'3 1 4 2'

The indices of the unnamed arguments may also be used to request them out of order.

>>> "{foo} {1} {bar} {0}".format(1, 2, bar=4, foo=3)
'3 2 4 1'

Chapter 3 ■ Working with Strings

48

Mixing manual and automatic field numbering is not permitted, however, as that could quickly get really
confusing.

But you don’t have to use the provided values themselves—you can access parts of them, just as in
ordinary Python code. Here’s an example:

>>> fullname = ["Alfred", "Smoketoomuch"]
>>> "Mr {name[1]}".format(name=fullname)
'Mr Smoketoomuch'
>>> import math
>>> tmpl = "The {mod.__name__} module defines the value {mod.pi} for π"
>>> tmpl.format(mod=math)
'The math module defines the value 3.141592653589793 for π'

As you can see, we can use both indexing and the dot notation for methods, attributes or variables, and
functions in imported modules. (The odd-looking __name__ variable contains the name of a given module.)

Basic Conversions
Once you’ve specified what a field should contain, you can add instructions on how to format it. First, you
can supply a conversion flag.

>>> print("{pi!s} {pi!r} {pi!a}".format(pi="π"))
π 'π' '\u03c0'

The three flags (s, r, and a) result in conversion using str, repr, and ascii, respectively. The str function
generally creates a natural-looking string version of the value (in this case, it does nothing to the input
string); the repr string tries to create a Python representation of the given value (in this case, a string literal),
while the ascii function insists on creating a representation that contains only character permitted in the
ASCII encoding. This is similar to how repr worked in Python 2.

You can also specify the type of value you are converting—or, rather, what kind of value you’d like it to
be treated as. For example, you may supply an integer but want to treat it as a decimal number. You do this
by using the f character (for fixed point) in the format specification, that is, after the colon separator.

>>> "The number is {num}".format(num=42)
'The number is 42'
>>> "The number is {num:f}".format(num=42)
'The number is 42.000000'

Or perhaps you’d rather format it as a binary numeral?

>>> "The number is {num:b}".format(num=42)
'The number is 101010'

There are several such type specifiers. For a list, see Table 3-1.

Chapter 3 ■ Working with Strings

49

Width, Precision, and Thousands Separators
When formatting floating-point numbers (or other, more specialized decimal number types), the default
is to display six digits after the decimal point, and in all cases, the default is to let the formatted value have
exactly the width needed to display it, with no padding of any kind. These defaults may not be exactly what
you want, of course, and you can augment your format specification with details about width and precision
to suit your preferences.

The width is indicated by an integer, as follows:

>>> "{num:10}".format(num=3)
' 3'
>>> "{name:10}".format(name="Bob")
'Bob '

Numbers and strings are aligned differently, as you can see. We’ll get back to alignment in the next section.
Precision is also specified by an integer, but it’s preceded by a period, alluding to the decimal point.

>>> "Pi day is {pi:.2f}".format(pi=pi)
'Pi day is 3.14'

Here, I’ve explicitly specified the f type, because the default treats the precision a bit differently. (See the
Python Library Reference for the precise rules.) You can combine width and precision, of course.

>>> "{pi:10.2f}".format(pi=pi)
' 3.14'

You can actually use precision for other types as well, although you will probably not need that very often.

Table 3-1.  String Formatting Type Specifiers

Type Meaning

b Formats an integer as a binary numeral.

c Interprets an integer as a Unicode code point.

d Formats an integer as a decimal numeral. Default for integers.

e Formats a decimal number in scientific notation with e to indicate the exponent.

E Same as e, but uses E to indicate the exponent.

f Formats a decimal number with a fixed number of decimals.

F Same as f, but formats special values (nan and inf) in uppercase.

g Chooses between fixed and scientific notation automatically. Default for decimal numbers,
except that the default version has at least one decimal.

G Same as g, but uppercases the exponent indicator and special values.

n Same as g, but inserts locale-dependent number separator characters.

o Formats an integer as an octal numeral.

s Formats a string as-is. Default for strings.

x Formats an integer as a hexadecimal numeral, with lowercase letters.

X Same as x, but with uppercase letters.

% Formats a number as a percentage (multiplied by 100, formatted by f, followed by %).

Chapter 3 ■ Working with Strings

50

>>> "{:.5}".format("Guido van Rossum")
'Guido'

Finally, you can indicate that you want thousands separators, by using a comma.

>>> 'One googol is {:,}'.format(10**100)
'One googol is 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00
0,000,000,000,000,000,000,000,000,000,000,000,000,000,000'

When used in conjunction with the other formatting elements, this comma should come between the width
and the period indicating precision.1

Signs, Alignment, and Zero-Padding
Quite a bit of the formatting machinery is aimed at formatting numbers, for example, for printing out a table
of nicely aligned values. The width and precision get us most of the way there, but our pretty output may
still be thrown off if we include negative numbers. And, as you’ve seen, strings and numbers are aligned
differently; maybe we want to change that, for example, to include a piece of text in the middle of a column
of numbers? Before the width and precision numbers, you may put a “flag,” which may be either zero, plus,
minus, or blank. A zero means that the number will be zero-padded.

>>> '{:010.2f}'.format(pi)
'0000003.14'

You specify left, right and centered alignment with <, >, and ^, respectively.

>>> print('{0:<10.2f}\n{0:^10.2f}\n{0:>10.2f}'.format(pi))
3.14
 3.14
 3.14

You can augment the alignment specifier with a fill character, which is used instead of the space character.

>>> "{:$^15}".format(" WIN BIG ")
'$$$ WIN BIG $$$'

There’s also the more specialized specifier =, which places any fill characters between sign and digits.

>>> print('{0:10.2f}\n{1:10.2f}'.format(pi, -pi))
 3.14
 -3.14
>>> print('{0:10.2f}\n{1:=10.2f}'.format(pi, -pi))
 3.14
- 3.14

If you want to include signs for positive numbers as well, you use the specifier + (after the alignment
specifier, if any), instead of the default -. If you use space character, positive will have a space inserted
instead of a +.

1And if you want a locale-dependent thousands separator, you should use the n type instead.

Chapter 3 ■ Working with Strings

51

>>> print('{0:-.2}\n{1:-.2}'.format(pi, -pi)) # Default
3.1
-3.1
>>> print('{0:+.2}\n{1:+.2}'.format(pi, -pi))
+3.1
-3.1
>>> print('{0: .2}\n{1: .2}'.format(pi, -pi))
 3.1
-3.1

One final component is the hash (#) option, which you place between the sign and width (if they are
present). This triggers an alternate form of conversion, with the details differing between types. For example,
for binary, octal, and hexadecimal conversion, a prefix is added.

>>> "{:b}".format(42)
'101010'
>>> "{:#b}".format(42)
'0b101010'

For various types of decimal numbers, it forces the inclusion of the decimal point (and for g, it keeps decimal
zeros).

>>> "{:g}".format(42)
'42'
>>> "{:#g}".format(42)
'42.0000'

In the example shown in Listing 3-1, I’ve used string formatting twice on the same strings—the first time
to insert the field widths into what is to become the eventual format specifiers. Because this information is
supplied by the user, I can’t hard-code the field widths.

Listing 3-1.  String Formatting Example

Print a formatted price list with a given width

width = int(input('Please enter width: '))

price_width = 10
item_width = width - price_width

header_fmt = '{{:{}}}{{:>{}}}'.format(item_width, price_width)
fmt = '{{:{}}}{{:>{}.2f}}'.format(item_width, price_width)

print('=' * width)

print(header_fmt.format('Item', 'Price'))

print('-' * width)

print(fmt.format('Apples', 0.4))
print(fmt.format('Pears', 0.5))
print(fmt.format('Cantaloupes', 1.92))

Chapter 3 ■ Working with Strings

52

print(fmt.format('Dried Apricots (16 oz.)', 8))
print(fmt.format('Prunes (4 lbs.)', 12))

print('=' * width)

The following is a sample run of the program:

Please enter width: 35
===================================
Item Price

Apples 0.40
Pears 0.50
Cantaloupes 1.92
Dried Apricots (16 oz.) 8.00
Prunes (4 lbs.) 12.00
===================================

String Methods
You have already encountered methods in lists. Strings have a much richer set of methods, in part because
strings have “inherited” many of their methods from the string module where they resided as functions in
earlier versions of Python (and where you may still find them, if you feel the need).

Because there are so many string methods, only some of the most useful ones are described here. For
a full reference, see Appendix B. In the description of the string methods, you will find references to other,
related string methods in this chapter (marked “See also”) or in Appendix B.

BUT STRING ISN’T DEAD

Even though string methods have completely upstaged the string module, the module still includes
a few constants and functions that aren’t available as string methods. The following are some useful
constants available from string2:

•	 string.digits: A string containing the digits 0–9

•	 string.ascii_letters: A string containing all ASCII letters (uppercase and lowercase)

•	 string.ascii_lowercase: A string containing all lowercase ASCII letters

•	 string.printable: A string containing all printable ASCII characters

•	 string.punctuation: A string containing all ASCII punctuation characters

•	 string.ascii_uppercase: A string containing all uppercase ASCII letters

Despite explicitly dealing with ASCII characters, the values are actually (unencoded) Unicode strings.

2For a more thorough description of the module, check out Section 6.1 of the Python Library Reference (https://docs.
python.org/3/library/string.html).

http://python.org/doc/lib/module-string.html)
http://python.org/doc/lib/module-string.html)

Chapter 3 ■ Working with Strings

53

center
The center method centers the string by padding it on either side with a given fill character—spaces by
default.

>>> "The Middle by Jimmy Eat World".center(39)
' The Middle by Jimmy Eat World '
>>> "The Middle by Jimmy Eat World".center(39, "*")
'*****The Middle by Jimmy Eat World*****'

In Appendix B: ljust, rjust, zfill.

find
The find method finds a substring within a larger string. It returns the leftmost index where the substring is
found. If it is not found, –1 is returned.

>>> 'With a moo-moo here, and a moo-moo there'.find('moo')
7
>>> title = "Monty Python's Flying Circus"
>>> title.find('Monty')
0
>>> title.find('Python')
6
>>> title.find('Flying')
15
>>> title.find('Zirquss')
-1

In our first encounter with membership in Chapter 2, we created part of a spam filter by using the expression
'$$$' in subject. We could also have used find (which would also have worked prior to Python 2.3, when
in could be used only when checking for single character membership in strings).

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0

■■ Note  The string method find does not return a Boolean value. If find returns 0, as it did here, it means
that it has found the substring, at index zero.

You may also supply a starting point for your search and, optionally, an ending point.

>>> subject = '$$$ Get rich now!!! $$$'
>>> subject.find('$$$')
0
>>> subject.find('$$$', 1) # Only supplying the start
20
>>> subject.find('!!!')
16

http://dx.doi.org/10.1007/978-1-4842-0028-5_2

Chapter 3 ■ Working with Strings

54

>>> subject.find('!!!', 0, 16) # Supplying start and end
-1

Note that the range specified by the start and stop values (second and third parameters) includes the first
index but not the second. This is common practice in Python.

In Appendix B: rfind, index, rindex, count, startswith, endswith.

join
A very important string method, join is the inverse of split. It is used to join the elements of a sequence.

>>> seq = [1, 2, 3, 4, 5]
>>> sep = '+'
>>> sep.join(seq) # Trying to join a list of numbers
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: sequence item 0: expected string, int found
>>> seq = ['1', '2', '3', '4', '5']
>>> sep.join(seq) # Joining a list of strings
'1+2+3+4+5'
>>> dirs = '', 'usr', 'bin', 'env'
>>> '/'.join(dirs)
'/usr/bin/env'
>>> print('C:' + '\\'.join(dirs))
C:\usr\bin\env

As you can see, the sequence elements that are to be joined must all be strings. Note how in the last two
examples I use a list of directories and format them according to the conventions of UNIX and DOS/
Windows simply by using a different separator (and adding a drive name in the DOS version).

See also: split.

lower
The lower method returns a lowercase version of the string.

>>> 'Trondheim Hammer Dance'.lower()
'trondheim hammer dance'

This can be useful if you want to write code that is case insensitive—that is, code that ignores the difference
between uppercase and lowercase letters. For instance, suppose you want to check whether a user name is
found in a list. If your list contains the string 'gumby' and the user enters his name as 'Gumby', you won’t find it.

>>> if 'Gumby' in ['gumby', 'smith', 'jones']: print('Found it!')
...
>>>

Of course, the same thing will happen if you have stored 'Gumby' and the user writes 'gumby', or even
'GUMBY'. A solution to this is to convert all names to lowercase both when storing and searching. The code
would look something like this:

Chapter 3 ■ Working with Strings

55

>>> name = 'Gumby'
>>> names = ['gumby', 'smith', 'jones']
>>> if name.lower() in names: print('Found it!')
...
Found it!
>>>

See also: islower, istitle, isupper, translate.

In Appendix B: capitalize, casefold, swapcase, title, upper.

TITLE CASING

One relative of lower is the title method (see Appendix B), which title cases a string—that is, all
words start with uppercase characters, and all other characters are lowercased. However, the word
boundaries are defined in a way that may give some unnatural results.

>>> "that's all folks".title()
"That'S All, Folks"

An alternative is the capwords function from the string module.

>>> import string
>>> string.capwords("that's all, folks")
That's All, Folks"

Of course, if you want a truly correctly capitalized title (which depends on the style you’re using—
possibly lowercasing articles, coordinating conjunctions, prepositions with fewer than five letters, and so
forth), you’re basically on your own.

replace
The replace method returns a string where all the occurrences of one string have been replaced by another.

>>> 'This is a test'.replace('is', 'eez')
'Theez eez a test'

If you have ever used the “search and replace” feature of a word processing program, you will no doubt see
the usefulness of this method.

See also: translate.

In Appendix B: expandtabs.

split
A very important string method, split is the inverse of join and is used to split a string into a sequence.

Chapter 3 ■ Working with Strings

56

>>> '1+2+3+4+5'.split('+')
['1', '2', '3', '4', '5']
>>> '/usr/bin/env'.split('/')
['', 'usr', 'bin', 'env']
>>> 'Using the default'.split()
['Using', 'the', 'default']

Note that if no separator is supplied, the default is to split on all runs of consecutive whitespace characters
(spaces, tabs, newlines, and so on).

See also: join.

In Appendix B: partition, rpartition, rsplit, splitlines.

strip
The strip method returns a string where whitespace on the left and right (but not internally) has been
stripped (removed).

>>> ' internal whitespace is kept '.strip()
'internal whitespace is kept'

As with lower, strip can be useful when comparing input to stored values. Let’s return to the user name
example from the section on lower, and let’s say that the user inadvertently types a space after his name.

>>> names = ['gumby', 'smith', 'jones']
>>> name = 'gumby '
>>> if name in names: print('Found it!')
...
>>> if name.strip() in names: print('Found it!')
...
Found it!
>>>

You can also specify which characters are to be stripped, by listing them all in a string parameter.

>>> '*** SPAM * for * everyone!!! ***'.strip(' *!')
'SPAM * for * everyone'

Stripping is performed only at the ends, so the internal asterisks are not removed.

In Appendix B: lstrip, rstrip.

translate
Similar to replace, translate replaces parts of a string, but unlike replace, translate works only with
single characters. Its strength lies in that it can perform several replacements simultaneously and can do so
more efficiently than replace.

There are quite a few rather technical uses for this method (such as translating newline characters or
other platform-dependent special characters), but let’s consider a simpler (although slightly more silly)
example. Let’s say you want to translate a plain English text into one with a German accent. To do this, you
must replace the character c with k, and s with z.

Chapter 3 ■ Working with Strings

57

Before you can use translate, however, you must make a translation table. This translation table
contains information about which Unicode code points should be translated to which. You construct such a
table using the maketrans method on the string type str itself. The method takes two arguments: two strings
of equal length, where each character in the first string should be replaced by the character in the same
position in the second string.3 In the case of our simple example, the code would look like the following:

>>> table = str.maketrans('cs', 'kz')

We can peek inside the table if we wish, though all we’ll see is a mapping between Unicode code points.

>>> table
{115: 122, 99: 107}

Once you have a translation table, you can use it as an argument to the translate method.

>>> 'this is an incredible test'.translate(table)
'thiz iz an inkredible tezt'

An optional third argument can be supplied to maketrans, specifying letters that should be deleted. If you
wanted to emulate a really fast-talking German, for instance, you could delete all the spaces.

>>> table = str.maketrans('cs', 'kz', ' ')
>>> 'this is an incredible test'.translate(table)
'thizizaninkredibletezt'

See also: replace, lower.

Is My String …
There are plenty of string methods that start with is, such as isspace, isdigit, or isupper, that determine
whether your string has certain properties (such as being all whitespace, digits, or uppercase), in which case
the methods return True. Otherwise, of course, they return False.

In Appendix B: isalnum, isalpha, isdecimal, isdigit, isidentifier, islower, isnumeric, isprintable,
isspace, istitle, isupper.

A Quick Summary
In this chapter, you saw two important ways of working with strings.

String formatting: The modulo operator (%) can be used to splice values into a
string that contains conversion flags, such as %s. You can use this to format values
in many ways, including right or left justification, setting a specific field width
and precision, adding a sign (plus or minus), or left-padding with zeros.

String methods: Strings have a plethora of methods. Some of them are extremely
useful (such as split and join), while others are used less often (such as
istitle or capitalize).

3You could also supply a dictionary, which you’ll learn about in the next chapter, mapping characters to other characters,
or to None, if they are to be deleted.

Chapter 3 ■ Working with Strings

58

New Functions in This Chapter

Function Description

string.capwords(s[, sep]) Splits s with split (using sep), capitalizes items, and joins with a
single space

ascii(obj) Constructs an ASCII representation of the given object

What Now?
Lists, strings, and dictionaries are three of the most important data types in Python. You’ve seen lists and
strings, so guess what’s next? In the next chapter, we look at how dictionaries support not only integer
indices but other kinds of keys (such as strings or tuples) as well. They also have a few methods, though not
as many as strings.

59© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_4

CHAPTER 4

Dictionaries: When Indices
Won’t Do

You’ve seen that lists are useful when you want to group values into a structure and refer to each value by
number. In this chapter, you learn about a data structure in which you can refer to each value by name. This
type of structure is called a mapping. The only built-in mapping type in Python is the dictionary. The values
in a dictionary don’t have any particular order but are stored under a key, which may be a number, a string,
or even a tuple.

Dictionary Uses
The name dictionary should give you a clue about the purpose of this structure. An ordinary book is made
for reading from start to finish. If you like, you can quickly open it to any given page. This is a bit like a
Python list. On the other hand, dictionaries—both real ones and their Python equivalent—are constructed
so that you can look up a specific word (key) easily to find its definition (value).

A dictionary is more appropriate than a list in many situations. Here are some examples of uses of
Python dictionaries:

•	 Representing the state of a game board, with each key being a tuple of coordinates

•	 Storing file modification times, with file names as keys

•	 A digital telephone/address book

Let’s say you have a list of people.

>>> names = ['Alice', 'Beth', 'Cecil', 'Dee-Dee', 'Earl']

What if you wanted to create a little database where you could store the telephone numbers of these
people—how would you do that? One way would be to make another list. Let’s say you’re storing only their
four-digit extensions. Then you would get something like this:

>>> numbers = ['2341', '9102', '3158', '0142', '5551']

Once you’ve created these lists, you can look up Cecil’s telephone number as follows:

>>> numbers[names.index('Cecil')]
'3158'

Chapter 4 ■ Dictionaries: When Indices Won’t Do

60

It works, but it’s a bit impractical. What you really would want to do is something like the following:

>>> phonebook['Cecil']
'3158'

Guess what? If phonebook is a dictionary, you can do just that.

Creating and Using Dictionaries
Dictionaries are written like this:

phonebook = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

Dictionaries consist of pairs (called items) of keys and their corresponding values. In this example, the names
are the keys, and the telephone numbers are the values. Each key is separated from its value by a colon (:),
the items are separated by commas, and the whole thing is enclosed in curly braces. An empty dictionary
(without any items) is written with just two curly braces, like this: {}.

■■ Note  Keys are unique within a dictionary (and any other kind of mapping). Values do not need to be unique
within a dictionary.

The dict Function
You can use the dict function1 to construct dictionaries from other mappings (for example, other
dictionaries) or from sequences of (key, value) pairs.

>>> items = [('name', 'Gumby'), ('age', 42)]
>>> d = dict(items)
>>> d
{'age': 42, 'name': 'Gumby'}
>>> d['name']
'Gumby'

It can also be used with keyword arguments, as follows:

>>> d = dict(name='Gumby', age=42)
>>> d
{'age': 42, 'name': 'Gumby'}

Although this is probably the most useful application of dict, you can also use it with a mapping argument
to create a dictionary with the same items as the mapping. (If used without any arguments, it returns a new
empty dictionary, just like other similar functions such as list, tuple, and str.) If the other mapping is
a dictionary (which is, after all, the only built-in mapping type), you can use the dictionary method copy
instead, as described later in this chapter.

1The dict function isn’t really a function at all. It is a class, just like list, tuple, and str.

Chapter 4 ■ Dictionaries: When Indices Won’t Do

61

Basic Dictionary Operations
The basic behavior of a dictionary in many ways mirrors that of a sequence.

•	 len(d) returns the number of items (key-value pairs) in d.

•	 d[k] returns the value associated with the key k.

•	 d[k] = v associates the value v with the key k.

•	 del d[k] deletes the item with key k.

•	 k in d checks whether there is an item in d that has the key k.

Although dictionaries and lists share several common characteristics, there are some important distinctions:

Key types: Dictionary keys don’t have to be integers (though they may be). They
may be any immutable type, such as floating-point (real) numbers, strings, or
tuples.

Automatic addition: You can assign a value to a key, even if that key isn’t in the
dictionary to begin with; in that case, a new item will be created. You cannot
assign a value to an index outside the list’s range (without using append or
something like that).

Membership: The expression k in d (where d is a dictionary) looks for a key,
not a value. The expression v in l, on the other hand (where l is a list) looks
for a value, not an index. This may seem a bit inconsistent, but it is actually quite
natural when you get used to it. After all, if the dictionary has the given key,
checking the corresponding value is easy.

■■ Tip  Checking for key membership in a dictionary is more efficient than checking for membership in a list.
The difference is greater the larger the data structures are.

The first point—that the keys may be of any immutable type—is the main strength of dictionaries. The
second point is important, too. Just look at the difference here:

>>> x = []
>>> x[42] = 'Foobar'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
>>> x = {}
>>> x[42] = 'Foobar'
>>> x
{42: 'Foobar'}

First, I try to assign the string 'Foobar' to position 42 in an empty list—clearly impossible because that
position does not exist. To make this possible, I would have to initialize x with [None] * 43 or something,
rather than simply []. The next attempt, however, works perfectly. Here I assign 'Foobar' to the key 42 of an
empty dictionary. You can see there’s no problem here. A new item is simply added to the dictionary, and
I’m in business.

Chapter 4 ■ Dictionaries: When Indices Won’t Do

62

Listing 4-1 shows the code for the telephone book example.

Listing 4-1.  Dictionary Example

A simple database

A dictionary with person names as keys. Each person is represented as
another dictionary with the keys 'phone' and 'addr' referring to their phone
number and address, respectively.
people = {

 'Alice': {
 'phone': '2341',
 'addr': 'Foo drive 23'
 },

 'Beth': {
 'phone': '9102',
 'addr': 'Bar street 42'
 },

 'Cecil': {
 'phone': '3158',
 'addr': 'Baz avenue 90'
 }

}

Descriptive labels for the phone number and address. These will be used
when printing the output.
labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = input('Name: ')

Are we looking for a phone number or an address?
request = input('Phone number (p) or address (a)? ')

Use the correct key:
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Only try to print information if the name is a valid key in
our dictionary:
if name in people: print("{}'s {} is {}.".format(name, labels[key], people[name][key]))

Chapter 4 ■ Dictionaries: When Indices Won’t Do

63

Here is a sample run of the program:

Name: Beth
Phone number (p) or address (a)? p
Beth's phone number is 9102.

String Formatting with Dictionaries
In Chapter 3, you saw how you could use string formatting to format values provided as individual (named
or unnamed) arguments to the format method. Sometimes, collecting a set of named values in the form
of a dictionary can make things easier. For example, the dictionary may contain all kinds of information,
and your format string will only pick out whatever it needs. You’ll have to specify that you’re supplying a
mapping, by using format_map.

>>> phonebook
{'Beth': '9102', 'Alice': '2341', 'Cecil': '3258'}
>>> "Cecil's phone number is {Cecil}.".format_map(phonebook)
"Cecil's phone number is 3258."

When using dictionaries like this, you may have any number of conversion specifiers, as long as all the given
keys are found in the dictionary. This sort of string formatting can be very useful in template systems (in this
case using HTML).

>>> template = '''<html>
... <head><title>{title}</title></head>
... <body>
... <h1>{title}</h1>
... <p>{text}</p>
... </body>'''
>>> data = {'title': 'My Home Page', 'text': 'Welcome to my home page!'}
>>> print(template.format_map(data))
<html>
<head><title>My Home Page</title></head>
<body>
<h1>My Home Page</h1>
<p>Welcome to my home page!</p>
</body>

Dictionary Methods
Just like the other built-in types, dictionaries have methods. While these methods can be very useful, you
probably will not need them as often as the list and string methods. You might want to skim this section first
to get an idea of which methods are available and then come back later if you need to find out exactly how a
given method works.

http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 4 ■ Dictionaries: When Indices Won’t Do

64

clear
The clear method removes all items from the dictionary. This is an in-place operation (like list.sort), so it
returns nothing (or, rather, None).

>>> d = {}
>>> d['name'] = 'Gumby'
>>> d['age'] = 42
>>> d
{'age': 42, 'name': 'Gumby'}
>>> returned_value = d.clear()
>>> d
{}
>>> print(returned_value)
None

Why is this useful? Let’s consider two scenarios. Here’s the first one:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x = {}
>>> x = {}
{'key': 'value'}

And here’s the second scenario:

>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key': 'value'}
>>> x.clear()
>>> y
{}

In both scenarios, x and y originally refer to the same dictionary. In the first scenario, I “blank out” x by
assigning a new, empty dictionary to it. That doesn’t affect y at all, which still refers to the original dictionary.
This may be the behavior you want, but if you really want to remove all the elements of the original
dictionary, you must use clear. As you can see in the second scenario, y is then also empty afterward.

copy
The copy method returns a new dictionary with the same key-value pairs (a shallow copy, since the values
themselves are the same, not copies).

>>> x = {'username': 'admin', 'machines': ['foo', 'bar', 'baz']}
>>> y = x.copy()
>>> y['username'] = 'mlh'

Chapter 4 ■ Dictionaries: When Indices Won’t Do

65

>>> y['machines'].remove('bar')
>>> y
{'username': 'mlh', 'machines': ['foo', 'baz']}
>>> x
{'username': 'admin', 'machines': ['foo', 'baz']}

As you can see, when you replace a value in the copy, the original is unaffected. However, if you modify a
value (in place, without replacing it), the original is changed as well because the same value is stored there
(like the 'machines' list in this example).

One way to avoid that problem is to make a deep copy, copying the values, any values they contain, and
so forth, as well. You accomplish this using the function deepcopy from the copy module.

>>> from copy import deepcopy
>>> d = {}
>>> d['names'] = ['Alfred', 'Bertrand']
>>> c = d.copy()
>>> dc = deepcopy(d)
>>> d['names'].append('Clive')
>>> c
{'names': ['Alfred', 'Bertrand', 'Clive']}
>>> dc
{'names': ['Alfred', 'Bertrand']}

fromkeys
The fromkeys method creates a new dictionary with the given keys, each with a default corresponding value
of None.

>>> {}.fromkeys(['name', 'age'])
{'age': None, 'name': None}

This example first constructs an empty dictionary and then calls the fromkeys method on that in order
to create another dictionary—a somewhat redundant strategy. Instead, you can call the method directly
on dict, which (as mentioned before) is the type of all dictionaries. (The concept of types and classes is
discussed more thoroughly in Chapter 7.)

>>> dict.fromkeys(['name', 'age'])
{'age': None, 'name': None}

If you don’t want to use None as the default value, you can supply your own default.

>>> dict.fromkeys(['name', 'age'], '(unknown)')
{'age': '(unknown)', 'name': '(unknown)'}

get
The get method is a forgiving way of accessing dictionary items. Ordinarily, when you try to access an item
that is not present in the dictionary, things go very wrong.

>>> d = {}
>>> print(d['name'])

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 4 ■ Dictionaries: When Indices Won’t Do

66

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: 'name'

That isn’t the case with get.

>>> print(d.get('name'))
None

As you can see, when you use get to access a nonexistent key, there is no exception. Instead, you get the
value None. You may supply your own “default” value, which is then used instead of None.

>>> d.get('name', 'N/A')
'N/A'

If the key is there, get works like ordinary dictionary lookup.

>>> d['name'] = 'Eric'
>>> d.get('name')
'Eric'

Listing 4-2 shows a modified version of the program from Listing 4-1, which uses the get method to access
the “database” entries.

Listing 4-2.  Dictionary Method Example

A simple database using get()

Insert database (people) from Listing 4-1 here.

labels = {
 'phone': 'phone number',
 'addr': 'address'
}

name = input('Name: ')

Are we looking for a phone number or an address?
request = input('Phone number (p) or address (a)? ')

Use the correct key:
key = request # In case the request is neither 'p' nor 'a'
if request == 'p': key = 'phone'
if request == 'a': key = 'addr'

Use get to provide default values:
person = people.get(name, {})
label = labels.get(key, key)
result = person.get(key, 'not available')

print("{}'s {} is {}.".format(name, label, result))

Chapter 4 ■ Dictionaries: When Indices Won’t Do

67

An example run of this program follows. Notice how the added flexibility of get allows the program to give
a useful response, even though the user enters values we weren’t prepared for.

Name: Gumby
Phone number (p) or address (a)? batting average
Gumby's batting average is not available.

items
The items method returns all the items of the dictionary as a list of items in which each item is of the form
(key, value). The items are not returned in any particular order.

>>> d = {'title': 'Python Web Site', 'url': 'http://www.python.org', 'spam': 0}
>>> d.items()
dict_items([('url', 'http://www.python.org'), ('spam', 0), ('title', 'Python Web Site')])

The return value is of a special type called a dictionary view. Dictionary views can be used for iteration
(see Chapter 5 for more on that). In addition, you can determine their length and check for membership.

>>> it = d.items()
>>> len(it)
3
>>> ('spam', 0) in it
True

A useful thing about views is that they don’t copy anything; they always reflect the underlying dictionary,
even if you modify it.

>>> d['spam'] = 1
>>> ('spam', 0) in it
False
>>> d['spam'] = 0
>>> ('spam', 0) in it
True

If, however, you’d rather copy the items into a list (which is what happened when you used items in older
versions of Python), you can always do that yourself.

>>> list(d.items())
[('spam', 0), ('title', 'Python Web Site'), ('url', 'http://www.python.org')]

keys
The keys method returns a dictionary view of the keys in the dictionary.

pop
The pop method can be used to get the value corresponding to a given key and then to remove the key-value
pair from the dictionary.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 4 ■ Dictionaries: When Indices Won’t Do

68

>>> d = {'x': 1, 'y': 2}
>>> d.pop('x')
1
>>> d
{'y': 2}

popitem
The popitem method is similar to list.pop, which pops off the last element of a list. Unlike list.pop,
however, popitem pops off an arbitrary item because dictionaries don’t have a “last element” or any order
whatsoever. This may be very useful if you want to remove and process the items one by one in an efficient
way (without retrieving a list of the keys first).

>>> d = {'url': 'http://www.python.org', 'spam': 0, 'title': 'Python Web Site'}
>>> d.popitem()
('url', 'http://www.python.org')
>>> d
{'spam': 0, 'title': 'Python Web Site'}

Although popitem is similar to the list method pop, there is no dictionary equivalent of append (which adds
an element to the end of a list). Because dictionaries have no order, such a method wouldn’t make any sense.

■■ Tip  If you want the popitem method to follow a predictable ordering, take a look at the OrderedDict class
from the collections module.

setdefault
The setdefault method is somewhat similar to get, in that it retrieves a value associated with a given key. In
addition to the get functionality, setdefault sets the value corresponding to the given key if it is not already
in the dictionary.

>>> d = {}
>>> d.setdefault('name', 'N/A')
'N/A'
>>> d
{'name': 'N/A'}
>>> d['name'] = 'Gumby'
>>> d.setdefault('name', 'N/A')
'Gumby'
>>> d
{'name': 'Gumby'}

As you can see, when the key is missing, setdefault returns the default and updates the dictionary
accordingly. If the key is present, its value is returned, and the dictionary is left unchanged. The default is
optional, as with get; if it is left out, None is used.

Chapter 4 ■ Dictionaries: When Indices Won’t Do

69

>>> d = {}
>>> print(d.setdefault('name'))
None
>>> d
{'name': None}

■■ Tip  If you want a global default for the entire dictionary, check out the defaultdict class from the
collections module.

update
The update method updates one dictionary with the items of another.

>>> d = {
... 'title': 'Python Web Site',
... 'url': 'http://www.python.org',
... 'changed': 'Mar 14 22:09:15 MET 2016'
... }
>>> x = {'title': 'Python Language Website'}
>>> d.update(x)
>>> d
{'url': 'http://www.python.org', 'changed':
'Mar 14 22:09:15 MET 2016', 'title': 'Python Language Website'}

The items in the supplied dictionary are added to the old one, supplanting any items there with the
same keys.

The update method can be called in the same way as the dict function (or type constructor), as
discussed earlier in this chapter. This means that update can be called with a mapping, a sequence (or other
iterable object) of (key, value) pairs, or keyword arguments.

values
The values method returns a dictionary view of the values in the dictionary. Unlike keys, the view returned
by values may contain duplicates.

>>> d = {}
>>> d[1] = 1
>>> d[2] = 2
>>> d[3] = 3
>>> d[4] = 1
>>> d.values()
dict_values([1, 2, 3, 1])

Chapter 4 ■ Dictionaries: When Indices Won’t Do

70

A Quick Summary
In this chapter, you learned about the following:

Mappings: A mapping enables you to label its elements with any immutable
object, the most usual types being strings and tuples. The only built-in mapping
type in Python is the dictionary.

String formatting with dictionaries: You can apply the string formatting
operation to dictionaries by using format_map, rather than using named
arguments with format.

Dictionary methods: Dictionaries have quite a few methods, which are called in
the same way as list and string methods.

New Functions in This Chapter

Function Description

dict(seq) Creates dictionary from (key, value) pairs (or a mapping or keyword arguments)

What Now?
You now know a lot about Python’s basic data types and how to use them to form expressions. As you may
remember from Chapter 1, computer programs have another important ingredient—statements. They’re
covered in detail in the next chapter.

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

71© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_5

CHAPTER 5

Conditionals, Loops, and Some
Other Statements

By now, I’m sure you are getting a bit impatient. All right—all these data types are just dandy, but you can’t
really do much with them, can you?

Let’s crank up the pace a bit. We’ve already encountered a few statement types (print statements,
import statements, and assignments). Let’s first take a look at some more ways of using these before
diving into the world of conditionals and loops. Then we’ll see how list comprehensions work almost like
conditionals and loops, even though they are expressions, and finally we’ll take a look at pass, del, and exec.

More About print and import
As you learn more about Python, you may notice that some aspects of Python that you thought you knew
have hidden features just waiting to pleasantly surprise you. Let’s take a look at a couple of such nice features
in print and import. Though print is really a function, it used to be a statement type of its own, which is
why I’m discussing it here.

■■ Tip  For many applications, logging (using the logging module) will be more appropriate than using print.
See Chapter 19 for more details.

Printing Multiple Arguments
You’ve seen how print can be used to print an expression, which is either a string or automatically
converted to one. But you can actually print more than one expression, as long as you separate them with
commas:

>>> print('Age:', 42)
Age: 42

http://dx.doi.org/10.1007/978-1-4842-0028-5_19

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

72

As you can see, a space character is inserted between each argument. This behavior can be very useful if you
want to combine text and variable values without using the full power of string formatting.

>>> name = 'Gumby'
>>> salutation = 'Mr.'
>>> greeting = 'Hello,'
>>> print(greeting, salutation, name)
Hello, Mr. Gumby

If the greeting string had no comma, how would you get the comma in the result? You couldn’t just use

print(greeting, ',', salutation, name)

because that would introduce a space before the comma. One solution would be the following:

print(greeting + ',', salutation, name)

which simply adds the comma to the greeting. You can specify a custom separator, if you want:

>>> print("I", "wish", "to", "register", "a", "complaint", sep="_")
I_wish_to_register_a_complaint

You can also specify a custom end string, to replace the default newline. For example, if you supply an empty
string, you can later continue printing on the same line.

print('Hello,', end='')
print('world!')

This program prints out Hello, world!.1

Importing Something as Something Else
Usually, when you import something from a module, you either use

import somemodule

or use

from somemodule import somefunction

or

from somemodule import somefunction, anotherfunction, yetanotherfunction

or

from somemodule import *

1This will work only in a script, and not in an interactive Python session. In the interactive session, each statement will be
executed (and print its contents) separately.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

73

The fourth version should be used only when you are certain that you want to import everything from the
given module. But what if you have two modules, each containing a function called open, for example—what
do you do then? You could simply import the modules using the first form and then use the functions as
follows:

module1.open(...)
module2.open(...)

But there is another option: you can add an as clause to the end and supply the name you want to use, either
for the entire module:

>>> import math as foobar
>>> foobar.sqrt(4)
2.0

or for the given function:

>>> from math import sqrt as foobar
>>> foobar(4)
2.0

For the open functions, you might use the following:

from module1 import open as open1
from module2 import open as open2

■■ Note  Some modules, such as os.path, are arranged hierarchically (inside each other). For more about
module structure, see the section on packages in Chapter 10.

Assignment Magic
The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking
You’ve seen quite a few examples of assignments, both for variables and for parts of data structures (such
as positions and slices in a list, or slots in a dictionary), but there is more. You can perform several different
assignments simultaneously.

>>> x, y, z = 1, 2, 3
>>> print(x, y, z)
1 2 3

Doesn’t sound useful? Well, you can use it to switch the contents of two (or more) variables.

>>> x, y = y, x
>>> print(x, y, z)
2 1 3

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

74

Actually, what I’m doing here is called sequence unpacking (or iterable unpacking). I have a sequence (or an
arbitrary iterable object) of values, and I unpack it into a sequence of variables. Let me be more explicit.

>>> values = 1, 2, 3
>>> values
(1, 2, 3)
>>> x, y, z = values
>>> x
1

This is particularly useful when a function or method returns a tuple (or other sequence or iterable object).
Let’s say that you want to retrieve (and remove) an arbitrary key-value pair from a dictionary. You can
then use the popitem method, which does just that, returning the pair as a tuple. Then you can unpack the
returned tuple directly into two variables.

>>> scoundrel = {'name': 'Robin', 'girlfriend': 'Marion'}
>>> key, value = scoundrel.popitem()
>>> key
'girlfriend'
>>> value
'Marion'

This allows functions to return more than one value, packed as a tuple, easily accessible through a single
assignment. The sequence you unpack must have exactly as many items as the targets you list on the left of
the = sign; otherwise, Python raises an exception when the assignment is performed.

>>> x, y, z = 1, 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack
>>> x, y, z = 1, 2, 3, 4
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: too many values to unpack

Instead of ensuring that the number of values matches exactly, you can gather up any superfluous ones
using the star operator (*). For example:

>>> a, b, *rest = [1, 2, 3, 4]
>>> rest
[3, 4]

You can place this starred variable in other positions, too.

>>> name = "Albus Percival Wulfric Brian Dumbledore"
>>> first, *middle, last = name.split()
>>> middle
['Percival', 'Wulfric', 'Brian']

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

75

The right-hand side of the assignment may be any kind of sequence, but the starred variable will always end
up containing a list. This is true even if the number of values matches exactly.

>>> a, *b, c = "abc"
>>> a, b, c
('a', ['b'], 'c')

The same kind of gathering can also be used in function argument lists (see Chapter 6).

Chained Assignments
Chained assignments are used as a shortcut when you want to bind several variables to the same value. This
may seem a bit like the simultaneous assignments in the previous section, except that here you are dealing
with only one value:

x = y = somefunction()

which is the same as this:

y = somefunction()
x = y

Note that the preceding statements may not be the same as

x = somefunction()
y = somefunction()

For more about this, see the section about the identity operator (is) later in this chapter.

Augmented Assignments
Instead of writing x = x + 1, you can just put the expression operator (in this case +) before the assignment
operator (=) and write x += 1. This is called an augmented assignment, and it works with all the standard
operators, such as *, /, %, and so on.

>>> x = 2
>>> x += 1
>>> x *= 2
>>> x
6

It also works with other data types (as long as the binary operator itself works with those data types).

>>> fnord = 'foo'
>>> fnord += 'bar'
>>> fnord *= 2
>>> fnord
'foobarfoobar'

Augmented assignments can make your code more compact and concise and, in many cases, more readable.

http://dx.doi.org/10.1007/978-1-4842-0028-5_6

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

76

Blocks: The Joy of Indentation
A block isn’t really a type of statement but something you’re going to need when you tackle the next two
sections.

A block is a group of statements that can be executed if a condition is true (conditional statements),
executed several times (loops), and so on. A block is created by indenting a part of your code, that is, putting
spaces in front of it.

■■ Note  You can use tab characters to indent your blocks as well. Python interprets a tab as moving to the
next tab stop, with one tab stop every eight spaces, but the standard and preferable style is to use spaces only,
not tabs, and specifically four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is pseudocode (not real
Python code) that shows how the indenting works:

this is a line
this is another line:
 this is another block
 continuing the same block
 the last line of this block
phew, there we escaped the inner block

In many languages, a special word or character (for example, begin or {) is used to start a block, and another
(such as end or }) is used to end it. In Python, a colon (:) is used to indicate that a block is about to begin,
and then every line in that block is indented (by the same amount). When you go back to the same amount
of indentation as some enclosing block, you know that the current block has ended. (Many programming
editors and IDEs are aware of how this block indenting works and can help you get it right without much
effort.)

Now, let’s take a look at what these blocks can be used for.

Conditions and Conditional Statements
Until now, you’ve written programs in which each statement is executed, one after the other. It’s time to
move beyond that and let your program choose whether or not to execute a block of statements.

So That’s What Those Boolean Values Are For
Now you are finally going to need those truth values (also called Boolean values, after George Boole, who did
a lot of smart stuff on truth values) that you’ve been bumping into repeatedly.

■■ Note  If you’ve been paying close attention, you noticed the sidebar in Chapter 1, “Sneak Peek: The if
Statement,” which describes the if statement. I haven’t really introduced it formally until now, and as you’ll
see, there is a bit more to it than what I’ve told you so far.

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

77

The following values are considered by the interpreter to mean false when evaluated as a Boolean expression
(for example, as the condition of an if statement):

False None 0 "" () [] {}

In other words, the standard values False and None, numeric zero of all types (including float, complex,
and so on), empty sequences (such as empty strings, tuples, and lists), and empty mappings (such as
dictionaries) are all considered to be false. Everything else2 is interpreted as true, including the special value
True.3

Got it? This means that every value in Python can be interpreted as a truth value, which can be a bit
confusing at first, but it can also be extremely useful. And even though you have all these truth values to
choose from, the “standard” truth values are True and False. In some languages (such as C and Python prior
to version 2.3), the standard truth values are 0 (for false) and 1 (for true). In fact, True and False aren’t that
different—they’re just glorified versions of 0 and 1 that look different but act the same.

>>> True
True
>>> False
False
>>> True == 1
True
>>> False == 0
True
>>> True + False + 42
43

So now, if you see a logical expression returning 1 or 0 (probably in an older version of Python), you will
know that what is really meant is True or False.

The Boolean values True and False belong to the type bool, which can be used (just like, for example,
list, str, and tuple) to convert other values.

>>> bool('I think, therefore I am')
True
>>> bool(42)
True
>>> bool('')
False
>>> bool(0)
False

Because any value can be used as a Boolean value, you will most likely rarely (if ever) need such an explicit
conversion (that is, Python will automatically convert the values for you).

2At least when we’re talking about built-in types—as you see in Chapter 9, you can influence whether objects you
construct yourself are interpreted as true or false.
3As Python veteran Laura Creighton puts it, the distinction is really closer to something vs. nothing, rather than true vs.
false.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

78

■■ Note  Although [] and "" are both false (that is, bool([]) == bool("") == False), they are not equal
(that is, [] != ""). The same goes for other false objects of different types (for example, the possibly more
obvious example () != False).

Conditional Execution and the if Statement
Truth values can be combined, and we’ll get back to how to do that, but let’s first see what you can use them
for. Try running the following script:

name = input('What is your name? ')
if name.endswith('Gumby'):
 print('Hello, Mr. Gumby')

This is the if statement, which lets you do conditional execution. That means that if the condition (the
expression after if but before the colon) evaluates to true (as defined previously), the following block (in this
case, a single print statement) is executed. If the condition is false, then the block is not executed (but you
guessed that, didn’t you?).

■■ Note  In the sidebar “Sneak Peek: The if Statement” in Chapter 1, the statement was written on a single
line. That is equivalent to using a single-line block, as in the preceding example.

else Clauses
In the example from the previous section, if you enter a name that ends with “Gumby,” the method name.
endswith returns True, making the if statement enter the block, and the greeting is printed. If you want, you
can add an alternative, with the else clause (called a clause because it isn’t really a separate statement, just a
part of the if statement).

name = input('What is your name?')
if name.endswith('Gumby'):
 print('Hello, Mr. Gumby')
else:
 print('Hello, stranger')

Here, if the first block isn’t executed (because the condition evaluated to false), you enter the second block
instead. This really shows how easy it is to read Python code, doesn’t it? Just read the code aloud (from if),
and it sounds just like a normal (or perhaps not quite normal) sentence.

There is also a close relative of the if statement, called the conditional expression. This is Python’s
version of the ternary operator from C. This is an expression that uses if and else to determine its value:

status = "friend" if name.endswith("Gumby") else "stranger"

The value of the expression is the first value provided (in this case, "friend") whenever the condition
(whatever comes right after if) is true, and the last value (in this case, "stranger") otherwise.

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

79

elif Clauses
If you want to check for several conditions, you can use elif, which is short for “else if.” It is a combination of
an if clause and an else clause—an else clause with a condition.

num = int(input('Enter a number: '))
if num > 0:
 print('The number is positive')
elif num < 0:
 print('The number is negative')
else:
 print('The number is zero')

Nesting Blocks
Let’s throw in a few bells and whistles. You can have if statements inside other if statement blocks, as
follows:

name = input('What is your name? ')
if name.endswith('Gumby'):
 if name.startswith('Mr.'):
 print('Hello, Mr. Gumby')
 elif name.startswith('Mrs.'):
 print('Hello, Mrs. Gumby')
 else:
 print('Hello, Gumby')
else:
 print('Hello, stranger')

Here, if the name ends with “Gumby,” you check the start of the name as well—in a separate if statement
inside the first block. Note the use of elif here. The last alternative (the else clause) has no condition—if no
other alternative is chosen, you use the last one. If you want, you can leave out either of the else clauses. If
you leave out the inner else clause, names that don’t start with either “Mr.” or “Mrs.” are ignored (assuming
the name was “Gumby”). If you drop the outer else clause, strangers are ignored.

More Complex Conditions
That’s really all there is to know about if statements. Now let’s return to the conditions themselves, because
they are the really interesting part of conditional execution.

Comparison Operators
Perhaps the most basic operators used in conditions are the comparison operators. They are used (surprise,
surprise) to compare things. Table 5-1 summarizes the comparison operators.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

80

COMPARING INCOMPATIBLE TYPES

In theory, you can compare any two objects x and y for relative size (using operators such as < and <=)
and obtain a truth value. However, such a comparison makes sense only if x and y are of the same or
closely related types (such as two integers or an integer and a floating-point number).

Just as it doesn’t make much sense to add an integer to a string, checking whether an integer is less
than a string seems rather pointless. Oddly, in Python versions prior to 3 you were allowed to do this.
Even if you’re using an older Python, you really should stay away from such comparisons, as the result
is totally arbitrary and may change between each execution of your program. In Python 3, comparing
incompatible types in this way is no longer allowed.

Comparisons can be chained in Python, just like assignments—you can put several comparison operators in
a chain, like this: 0 < age < 100.

Some of these operators deserve some special attention and will be described in the following sections.

The Equality Operator

If you want to know if two things are equal, use the equality operator, written as a double equality sign, ==.

>>> "foo" == "foo"
True
>>> "foo" == "bar"
False

Double? Why can’t you just use a single equality sign, as they do in mathematics? I’m sure you’re clever
enough to figure this out for yourself, but let’s try it.

>>> "foo" = "foo"
SyntaxError: can't assign to literal

Table 5-1.  The Python Comparison Operators

Expression Description

x == y x equals y.

x < y x is less than y.

x > y x is greater than y.

x >= y x is greater than or equal to y.

x <= y x is less than or equal to y.

x != y x is not equal to y.

x is y x and y are the same object.

x is not y x and y are different objects.

x in y x is a member of the container (e.g., sequence) y.

x not in y x is not a member of the container (e.g., sequence) y.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

81

The single equality sign is the assignment operator, which is used to change things, which is not what you
want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t.

>>> x = y = [1, 2, 3]
>>> z = [1, 2, 3]
>>> x == y
True
>>> x == z
True
>>> x is y
True
>>> x is z
False

Until the last example, this looks fine, but then you get that strange result: x is not z, even though they are
equal. Why? Because is tests for identity, rather than equality. The variables x and y have been bound to the
same list, while z is simply bound to another list that happens to contain the same values in the same order.
They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>>> x = [1, 2, 3]
>>> y = [2, 4]
>>> x is not y
True
>>> del x[2]
>>> y[1] = 1
>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is not y (just the inverse of x is y),
which you already know. I change the lists around a bit, and though they are now equal, they are still two
separate lists.

>>> x == y
True
>>> x is y
False

Here, it is obvious that the two lists are equal but not identical.
To summarize, use == to see if two objects are equal, and use is to see if they are identical (the same object).

■■ Caution  Avoid the use of is with basic, immutable values such as numbers and strings. The result is
unpredictable because of the way Python handles these objects internally.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

82

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section “Membership”). It can be used in
conditions, just like all the other comparison operators.

name = input('What is your name?')
if 's' in name:
 print('Your name contains the letter "s".')
else:
 print('Your name does not contain the letter "s".')

String and Sequence Comparisons

Strings are compared according to their order when sorted alphabetically.

>>> "alpha" < "beta"
True

The ordering is alphabetical, but the alphabet is all of Unicode, ordered by their code points.

>>> " " < " "
True

Actually, characters are sorted by their ordinal values. The ordinal value of a letter can be found with the ord
function, whose inverse is chr:

>>> ord(" ")
128585
>>> ord(" ")
128586
>>> chr(128584)
' '

This approach is quite reasonable and consistent, but it might run counter to how you’d sort things yourself
at times. For example, capital letters are may not work the way you want.

>>> "a" < "B"
False

One trick is to ignore the difference between uppercase and lowercase letters and to use the string method
lower. Here’s an example (see Chapter 3):

>>> "a".lower() < "B".lower()
True
>>> 'FnOrD'.lower() == 'Fnord'.lower()
True

http://dx.doi.org/10.1007/978-1-4842-0028-5_2
http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

83

Other sequences are compared in the same manner, except that instead of characters, you may have other
types of elements.

>>> [1, 2] < [2, 1]
True

If the sequences contain other sequences as elements, the same rule applies to these sequence elements.

>>> [2, [1, 4]] < [2, [1, 5]]
True

Boolean Operators
Now, you have plenty of things that return truth values. (In fact, given the fact that all values can be
interpreted as truth values, all expressions return them.) But you may want to check for more than one
condition. For example, let’s say you want to write a program that reads a number and checks whether it’s
between 1 and 10 (inclusive). You could do it like this:

number = int(input('Enter a number between 1 and 10: '))
if number <= 10:
 if number >= 1:
 print('Great!')
 else:
 print('Wrong!')
else:
 print('Wrong!')

This would work, but it’s clumsy. The fact that you have to write print 'Wrong!' in two places should alert
you to this clumsiness. Duplication of effort is not a good thing. So what do you do? It’s so simple.

number = int(input('Enter a number between 1 and 10: '))
if number <= 10 and number >= 1:
 print('Great!')
else:
 print('Wrong!')

■■ Note  I could (and quite probably should) have made this example even simpler by using the following
chained comparison: 1 <= number <= 10.

The and operator is a so-called Boolean operator. It takes two truth values, and it returns true if both are
true, and false otherwise. You have two more of these operators, or and not. With just these three, you can
combine truth values in any way you like.

if ((cash > price) or customer_has_good_credit) and not out_of_stock:
 give_goods()

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

84

SHORT-CIRCUIT LOGIC AND CONDITIONAL EXPRESSIONS

The Boolean operators have one interesting property: they evaluate only what they need to evaluate. For
example, the expression x and y requires both x and y to be true; so if x is false, the expression returns
false immediately, without worrying about y. Actually, if x is false, it returns x; otherwise, it returns y.
(Can you see how this gives the expected meaning?) This behavior is called short-circuit logic (or lazy
evaluation): the Boolean operators are often called logical operators, and as you can see, the second
value is sometimes “short-circuited.” This works with or, too. In the expression x or y, if x is true, it is
returned; otherwise, y is returned. (Can you see how this makes sense?) Note that this means that any
code you have (such as a function call) after a Boolean operator may not be executed at all. You might
see this behavior exploited in code like the following:

name = input('Please enter your name: ') or '<unknown>'

If no name is input, the or expression has the value '<unknown>'. In many cases, you might want
to use a conditional expression rather than such short-circuit tricks, though statements such as the
previous do have their uses.

Assertions
There is a useful relative of the if statement, which works more or less like this (pseudocode):

if not condition:
 crash program

Now, why on earth would you want something like that? Simply because it’s better that your program
crashes when an error condition emerges than at a much later time. Basically, you can require that certain
things be true (for example, when checking required properties of parameters to your functions or as an aid
during initial testing and debugging). The keyword used in the statement is assert.

>>> age = 10
>>> assert 0 < age < 100
>>> age = -1
>>> assert 0 < age < 100
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError

It can be useful to put the assert statement in your program as a checkpoint, if you know something must be
true for your program to work correctly.

A string may be added after the condition, to explain the assertion.

>>> age = -1
>>> assert 0 < age < 100, 'The age must be realistic'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AssertionError: The age must be realistic

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

85

Loops
Now you know how to do something if a condition is true (or false), but how do you do something several
times? For example, you might want to create a program that reminds you to pay the rent every month, but
with the tools we have looked at until now, you would need to write the program like this (pseudocode):

send mail
wait one month send mail
wait one month send mail
wait one month
(... and so on)

But what if you wanted it to continue doing this until you stopped it? Basically, you want something like this
(again, pseudocode):

while we aren't stopped:
 send mail
 wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the numbers from 1 to 100. Again, you
could do it the stupid way.

print(1)
print(2)
print(3)
...
print(99)
print(100)

But you didn’t start using Python because you wanted to do stupid things, right?

while Loops
In order to avoid the cumbersome code of the preceding example, it would be useful to be able to do
something like this:

x = 1
while x <= 100:
 print(x)
 x += 1

Now, how do you do that in Python? You guessed it—you do it just like that. Not that complicated, is it? You
could also use a loop to ensure that the user enters a name, as follows:

name = ''
while not name:
 name = input('Please enter your name: ')
print('Hello, {}!'.format(name))

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

86

Try running this and then just pressing the Enter key when asked to enter your name. You’ll see that the
question appears again, because name is still an empty string, which evaluates to false.

■■ Tip  What would happen if you entered just a space character as your name? Try it. It is accepted because
a string with one space character is not empty and therefore not false. This is definitely a flaw in our little
program, but it’s easily corrected: just change while not name to while not name or name.isspace() or,
perhaps, while not name.strip().

for Loops
The while statement is very flexible. It can be used to repeat a block of code while any condition is true.
While this may be very nice in general, sometimes you may want something tailored to your specific needs.
One such need is to perform a block of code for each element of a set (or, actually, sequence or other iterable
object) of values.

■■ Note  Basically, an iterable object is any object that you can iterate over (that is, use in a for loop). You
learn more about iterables and iterators in Chapter 9, but for now, you can simply think of them as sequences.

You can do this with the for statement:

words = ['this', 'is', 'an', 'ex', 'parrot']
for word in words:
 print(word)

or

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in numbers:
 print(number)

Because iterating (another word for looping) over a range of numbers is a common thing to do, Python has a
built-in function to make ranges for you.

>>> range(0, 10)
range(0, 10)
>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges work like slices. They include the first limit (in this case 0) but not the last (in this case 10). Quite
often, you want the ranges to start at 0, and this is actually assumed if you supply only one limit (which will
then be the last).

>>> range(10)
range(0, 10)

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

87

The following program writes out the numbers from 1 to 100:

for number in range(1,101):
 print(number)

Notice that this is much more compact than the while loop I used earlier.

■■ Tip  If you can use a for loop rather than a while loop, you should probably do so.

Iterating Over Dictionaries
To loop over the keys of a dictionary, you can use a plain for statement, just as you can with sequences.

d = {'x': 1, 'y': 2, 'z': 3}
for key in d:
 print(key, 'corresponds to', d[key])

You could have used a dictionary method such as keys to retrieve the keys. If only the values were of interest,
you could have used d.values. You may remember that d.items returns key-value pairs as tuples. One great
thing about for loops is that you can use sequence unpacking in them.

for key, value in d.items():
 print(key, 'corresponds to', value)

■■ Note  As always, the order of dictionary elements is undefined. In other words, when iterating over either
the keys or the values of a dictionary, you can be sure that you’ll process all of them, but you can’t know in
which order. If the order is important, you can store the keys or values in a separate list and, for example, sort it
before iterating over it. If you want your mapping to remember the insertion order of its items, you can use class
OrderedDict from the collections module.

Some Iteration Utilities
Python has several functions that can be useful when iterating over a sequence (or other iterable object).
Some of these are available in the itertools module (mentioned in Chapter 10), but there are some built-in
functions that come in quite handy as well.

Parallel Iteration
Sometimes you want to iterate over two sequences at the same time. Let’s say that you have the following
two lists:

names = ['anne', 'beth', 'george', 'damon']
ages = [12, 45, 32, 102]

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

88

If you want to print out names with corresponding ages, you could do the following:

for i in range(len(names)):
 print(names[i], 'is', ages[i], 'years old')

Here, i serves as a standard variable name for loop indices (as these things are called). A useful tool for
parallel iteration is the built-in function zip, which “zips” together the sequences, returning a sequence of
tuples. The return value is a special zip object, meant for iteration, but it can be converted using list, to take
a look at its contents.

>>> list(zip(names, ages))
[('anne', 12), ('beth', 45), ('george', 32), ('damon', 102)]

Now we can unpack the tuples in our loop.

for name, age in zip(names, ages):
 print(name, 'is', age, 'years old')

The zip function works with as many sequences as you want. It’s important to note what zip does when the
sequences are of different lengths: it stops when the shortest sequence is used up.

>>> list(zip(range(5), range(100000000)))
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

Numbered Iteration
In some cases, you want to iterate over a sequence of objects and at the same time have access to the index
of the current object. For example, you might want to replace every string that contains the substring 'xxx'
in a list of strings. There would certainly be many ways of doing this, but let’s say you want to do something
along the following lines:

for string in strings:
 if 'xxx' in string:
 index = strings.index(string) # Search for the string in the list of strings
 strings[index] = '[censored]'

This would work, but it seems unnecessary to search for the given string before replacing it. Also, if you
didn’t replace it, the search might give you the wrong index (that is, the index of some previous occurrence
of the same word). A better version would be the following:

index = 0
for string in strings:
 if 'xxx' in string:
 strings[index] = '[censored]'
 index += 1

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

89

This also seems a bit awkward, although acceptable. Another solution is to use the built-in function
enumerate.

for index, string in enumerate(strings):
 if 'xxx' in string:
 strings[index] = '[censored]'

This function lets you iterate over index-value pairs, where the indices are supplied automatically.

Reversed and Sorted Iteration
Let’s look at another couple of useful functions: reversed and sorted. They’re similar to the list methods
reverse and sort (with sorted taking arguments similar to those taken by sort), but they work on any
sequence or iterable object, and instead of modifying the object in place, they return reversed and sorted
versions.

>>> sorted([4, 3, 6, 8, 3])
[3, 3, 4, 6, 8]
>>> sorted('Hello, world!')
[' ', '!', ',', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']
>>> list(reversed('Hello, world!'))
['!', 'd', 'l', 'r', 'o', 'w', ' ', ',', 'o', 'l', 'l', 'e', 'H']
>>> ''.join(reversed('Hello, world!'))
'!dlrow ,olleH'

Note that although sorted returns a list, reversed returns a more mysterious iterable object, just like zip.
You don’t need to worry about what this really means; you can use it in for loops or methods such as join
without any problems. You just can’t index or slice it, or call list methods on it directly. In order to perform
those tasks, just convert the returned object with list.

■■ Tip  We can use the trick of lowercasing to get proper alphabetical sorting. For example, you could use
str.lower as the key argument to sort or sorted. For example, sorted("aBc", key=str.lower) returns
['a', 'B', 'c'].

Breaking Out of Loops
Usually, a loop simply executes a block until its condition becomes false, or until it has used up all sequence
elements. But sometimes you may want to interrupt the loop, to start a new iteration (one “round” of
executing the block), or to simply end the loop.

break
To end (break out of) a loop, you use break. Let’s say you wanted to find the largest square (the result of an
integer multiplied by itself) below 100. Then you start at 100 and iterate downward to 0. When you’ve found
a square, there’s no need to continue, so you simply break out of the loop.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

90

from math import sqrt
for n in range(99, 0, -1):
 root = sqrt(n)
 if root == int(root):
 print(n)
 break

If you run this program, it will print out 81 and stop. Notice that I’ve added a third argument to range—
that’s the step, the difference between every pair of adjacent numbers in the sequence. It can be used to
iterate downward as I did here, with a negative step value, and it can be used to skip numbers.

>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

continue
The continue statement is used less often than break. It causes the current iteration to end and to “jump” to
the beginning of the next. It basically means “skip the rest of the loop body, but don’t end the loop.” This can
be useful if you have a large and complicated loop body and several possible reasons for skipping it. In that
case, you can use continue, as follows:

for x in seq:
 if condition1: continue
 if condition2: continue
 if condition3: continue

 do_something()
 do_something_else()
 do_another_thing()
 etc()

In many cases, however, simply using an if statement is just as good.

for x in seq:
 if not (condition1 or condition2 or condition3):
 do_something()
 do_something_else()
 do_another_thing()
 etc()

Even though continue can be a useful tool, it is not essential. The break statement, however, is something
you should get used to, because it is used quite often in concert with while True, as explained in the next
section.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

91

The while True/break Idiom
The for and while loops in Python are quite flexible, but every once in a while, you may encounter a
problem that makes you wish you had more functionality. For example, let’s say you want to do something
when a user enters words at a prompt, and you want to end the loop when no word is provided. One way of
doing that would be like this:

word = 'dummy'
while word:
 word = input('Please enter a word: ')
 # do something with the word:
 print('The word was', word)

Here is an example of a session:

Please enter a word: first
The word was first
Please enter a word: second
The word was second
Please enter a word:

This works just as desired. (Presumably, you would do something more useful with the word than print it
out, though.) However, as you can see, this code is a bit ugly. To enter the loop in the first place, you need
to assign a dummy (unused) value to word. Dummy values like this are usually a sign that you aren’t doing
things quite right. Let’s try to get rid of it.

word = input('Please enter a word: ')
while word:
 # do something with the word:
 print('The word was ', word)
 word = input('Please enter a word: ')

Here the dummy is gone, but I have repeated code (which is also a bad thing): I need to use the same
assignment and call to input in two places. How can I avoid that? I can use the while True/break idiom.

while True:
 word = input('Please enter a word: ')
 if not word: break
 # do something with the word:
 print('The word was ', word)

The while True part gives you a loop that will never terminate by itself. Instead, you put the condition in an
if statement inside the loop, which calls break when the condition is fulfilled. Thus, you can terminate the
loop anywhere inside the loop instead of only at the beginning (as with a normal while loop). The if/break
line splits the loop naturally in two parts: the first takes care of setting things up (the part that would be
duplicated with a normal while loop), and the other part makes use of the initialization from the first part,
provided that the loop condition is true.

Although you should be wary of using break too often in your code (because it can make your loops
harder to read, especially if you put more than one break in a single loop), this specific technique is so
common that most Python programmers (including yourself) will probably be able to follow your intentions.

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

92

else Clauses in Loops
When you use break statements in loops, it is often because you have “found” something or because
something has “happened.” It’s easy to do something when you break out (like print(n)), but sometimes
you may want to do something if you didn’t break out. But how do you find out? You could use a Boolean
variable, set it to False before the loop, and set it to True when you break out. Then you can use an if
statement afterward to check whether you did break out.

broke_out = False
for x in seq:
 do_something(x)
 if condition(x):
 broke_out = True
 break
 do_something_else(x)
if not broke_out:
 print("I didn't break out!")

A simpler way is to add an else clause to your loop—it is executed only if you didn’t call break. Let’s reuse
the example from the preceding section on break.

from math import sqrt
for n in range(99, 81, -1):
 root = sqrt(n)
 if root == int(root):
 print(n)
 break
else:
 print("Didn't find it!")

Notice that I changed the lower (exclusive) limit to 81 to test the else clause. If you run the program, it prints
out “Didn’t find it!” because (as you saw in the section on break) the largest square below 100 is 81. You can
use continue, break, and else clauses with both for loops and while loops.

Comprehensions—Slightly Loopy
List comprehension is a way of making lists from other lists (similar to set comprehension, if you know that
term from mathematics). It works in a way similar to for loops and is actually quite simple.

>>> [x * x for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range(10). Pretty straightforward? What if you want to print out
only those squares that are divisible by 3? Then you can use the modulo operator—y % 3 returns zero
when y is divisible by 3. (Note that x*x is divisible by 3 only if x is divisible by 3.) You put this into your list
comprehension by adding an if part to it.

>>> [x*x for x in range(10) if x % 3 == 0]
[0, 9, 36, 81]

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

93

You can also add more for parts.

>>> [(x, y) for x in range(3) for y in range(3)]
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

As a comparison, the following two for loops build the same list:

result = []
for x in range(3):
 for y in range(3)
 result.append((x, y))

This can be combined with an if clause, just as before.

>>> girls = ['alice', 'bernice', 'clarice']
>>> boys = ['chris', 'arnold', 'bob']
>>> [b+'+'+g for b in boys for g in girls if b[0] == g[0]]
['chris+clarice', 'arnold+alice', 'bob+bernice']

This gives the pairs of boys and girls who have the same initial letter in their first name.

A BETTER SOLUTION

The boy/girl pairing example isn’t particularly efficient because it checks every possible pairing. There
are many ways of solving this problem in Python. The following was suggested by Alex Martelli:

girls = ['alice', 'bernice', 'clarice']
boys = ['chris', 'arnold', 'bob']
letterGirls = {}
for girl in girls:
 letterGirls.setdefault(girl[0], []).append(girl)
print([b+'+'+g for b in boys for g in letterGirls[b[0]]])

This program constructs a dictionary, called letterGirls, where each entry has a single letter as
its key and a list of girls’ names as its value. (The setdefault dictionary method is described in the
previous chapter.) After this dictionary has been constructed, the list comprehension loops over all the
boys and looks up all the girls whose name begins with the same letter as the current boy. This way,
the list comprehension doesn’t need to try out every possible combination of boy and girl and check
whether the first letters match.

Using normal parentheses instead of brackets will not give you a “tuple comprehension”—you’ll end up
with a generator. See the sidebar “Loopy Generators” in Chapter 9 for more information. You can, however,
use curly braces to perform dictionary comprehension.

>>> squares = {i:"{} squared is {}".format(i, i**2) for i in range(10)}
>>> squares[8]
'8 squared is 64'

Instead of a single expression in front of the for, as you would have with a list comprehension, you have two
expressions separated by a colon. These will become the keys and their corresponding values.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

94

And Three for the Road
To end the chapter, let’s take a quick look at three more statements: pass, del, and exec.

Nothing Happened!
Sometimes you need to do nothing. This may not be very often, but when it happens, it’s good to know that
you have the pass statement.

>>> pass
>>>

There’s not much going on here.

Now, why on Earth would you want a statement that does nothing? It can be useful as a placeholder while
you are writing code. For example, you may have written an if statement and you want to try it, but you lack
the code for one of your blocks. Consider the following:

if name == 'Ralph Auldus Melish':
 print('Welcome!')
elif name == 'Enid':
 # Not finished yet ...
elif name == 'Bill Gates':
 print('Access Denied')

This code won’t run because an empty block is illegal in Python. To fix this, simply add a pass statement to
the middle block.

if name == 'Ralph Auldus Melish':
 print('Welcome!')
elif name == 'Enid':
 # Not finished yet ...
 pass
elif name == 'Bill Gates':
 print('Access Denied')

■■ Note  An alternative to the combination of a comment and a pass statement is to simply insert a string.
This is especially useful for unfinished functions (see Chapter 6) and classes (see Chapter 7) because they will
then act as docstrings (explained in Chapter 6).

Deleting with del
In general, Python deletes objects that you don’t use anymore (because you no longer refer to them through
any variables or parts of your data structures).

>>> scoundrel = {'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = scoundrel

http://dx.doi.org/10.1007/978-1-4842-0028-5_6
http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_6

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

95

>>> scoundrel
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> scoundrel = None
>>> robin
{'age': 42, 'first name': 'Robin', 'last name': 'of Locksley'}
>>> robin = None

At first, robin and scoundrel are both bound to the same dictionary. So when I assign None to scoundrel,
the dictionary is still available through robin. But when I assign None to robin as well, the dictionary
suddenly floats around in the memory of the computer with no name attached to it. There is no way I can
retrieve it or use it, so the Python interpreter (in its infinite wisdom) simply deletes it. (This is called garbage
collection.) Note that I could have used any value other than None as well. The dictionary would be just as
gone.

Another way of doing this is to use the del statement (which we used to delete sequence and dictionary
elements in Chapters 2 and 4, remember?). Not only does this remove a reference to an object, but it also
removes the name itself.

>>> x = 1
>>> del x
>>> x
Traceback (most recent call last):
 File "<pyshell#255>", line 1, in ?
 x
NameError: name 'x' is not defined

This may seem easy, but it can actually be a bit tricky to understand at times. For instance, in the following
example, x and y refer to the same list:

>>> x = ["Hello", "world"]
>>> y = x
>>> y[1] = "Python"
>>> x
['Hello', 'Python']

You might assume that by deleting x, you would also delete y, but that is not the case.

>>> del x
>>> y
['Hello', 'Python']

Why is this? x and y referred to the same list, but deleting x didn’t affect y at all. The reason for this is that you
delete only the name, not the list itself (the value). In fact, there is no way to delete values in Python—and
you don’t really need to, because the Python interpreter does it by itself whenever you don’t use the value
anymore.

http://dx.doi.org/10.1007/978-1-4842-0028-5_2
http://dx.doi.org/10.1007/978-1-4842-0028-5_4

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

96

Executing and Evaluating Strings with exec and eval
Sometimes you may want to create Python code “on the fly” and execute it as a statement or evaluate it as
an expression. This may border on dark magic at times—consider yourself warned. Both exec and eval are
functions, but exec used to be a statement type of its own, and eval is closely related to it, so that is why I
discuss them here.

■■ Caution  In this section, you learn to execute Python code stored in a string. This is a potential security hole
of great dimensions. If you execute a string where parts of the contents have been supplied by a user, you have
little or no control over what code you are executing. This is especially dangerous in network applications, such
as Common Gateway Interface (CGI) scripts, which you will learn about in Chapter 15.

exec
The exec function is used to execute a string.

>>> exec("print('Hello, world!')")
Hello, world!

However, using the exec statement with a single argument is rarely a good thing. In most cases, you want
to supply it with a namespace—a place where it can put its variables. Otherwise, the code will corrupt your
namespace (that is, change your variables). For example, let’s say that the code uses the name sqrt.

>>> from math import sqrt
>>> exec("sqrt = 1")
>>> sqrt(4)
Traceback (most recent call last):
 File "<pyshell#18>", line 1, in ?
 sqrt(4)
TypeError: object is not callable: 1

Well, why would you do something like that in the first place? The exec function is mainly useful when
you build the code string on the fly. And if the string is built from parts that you get from other places, and
possibly from the user, you can rarely be certain of exactly what it will contain. So to be safe, you give it a
dictionary, which will work as a namespace for it.

■■ Note  The concept of namespaces, or scopes, is an important one. You will look at it in depth in the next
chapter, but for now, you can think of a namespace as a place where you keep your variables, much like an
invisible dictionary. So when you execute an assignment like x = 1, you store the key x with the value 1 in the
current namespace, which will often be the global namespace (which we have been using, for the most part, up
until now) but doesn’t have to be.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

97

You do this by adding a second argument—some dictionary that will function as the namespace for your
code string.4

>>> from math import sqrt
>>> scope = {}
>>> exec('sqrt = 1', scope)
>>> sqrt(4)
2.0
>>> scope['sqrt']
1

As you can see, the potentially destructive code does not overwrite the sqrt function. The function works
just as it should, and the sqrt variable resulting from the exec’ed assignment is available from the scope.

Note that if you try to print out scope, you see that it contains a lot of stuff because the dictionary called
__builtins__ is automatically added and contains all built-in functions and values.

>>> len(scope)
2
>>> scope.keys()
['sqrt', '__builtins__']

eval
A built-in function that is similar to exec is eval (for “evaluate”). Just as exec executes a series of Python
statements, eval evaluates a Python expression (written in a string) and returns the resulting value. (exec
doesn’t return anything because it is a statement itself.) For example, you can use the following to make a
Python calculator:

>>> eval(input("Enter an arithmetic expression: "))
Enter an arithmetic expression: 6 + 18 * 2
42

You can supply a namespace with eval, just as with exec, although expressions rarely rebind variables in the
way statements usually do.

■■ Caution  Even though expressions don’t rebind variables as a rule, they certainly can (for example, by
calling functions that rebind global variables). Therefore, using eval with an untrusted piece of code is no safer
than using exec. There is, currently, no safe way of executing untrusted code in Python. One alternative is to
use an implementation of Python such as Jython (see Chapter 17) and use some native mechanism such as the
Java sandbox.

4In fact, you can supply exec with two namespaces, one global and one local. The global one must be a dictionary, but the
local one may be any mapping. The same holds for eval.

http://dx.doi.org/10.1007/978-1-4842-0028-5_17

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

98

PRIMING THE SCOPE

When supplying a namespace for exec or eval, you can also put some values in before actually using
the namespace.

>>> scope = {}
>>> scope['x'] = 2
>>> scope['y'] = 3
>>> eval('x * y', scope)
6

In the same way, a scope from one exec or eval call can be used again in another one.

>>> scope = {}
>>> exec('x = 2', scope)
>>> eval('x * x', scope)
4

You could build up rather complicated programs this way, but … you probably shouldn’t.

A Quick Summary
In this chapter, you saw several kinds of statements.

Printing: You can use the print statement to print several values by separating
them with commas. If you end the statement with a comma, later print
statements will continue printing on the same line.

Importing: Sometimes you don’t like the name of a function you want to
import—perhaps you’ve already used the name for something else. You can use
the import … as … statement to locally rename a function.

Assignments: You saw that through the wonder of sequence unpacking and
chained assignments, you can assign values to several variables at once, and that
with augmented assignments, you can change a variable in place.

Blocks: Blocks are used as a means of grouping statements through indentation.
They are used in conditionals and loops and, as you see later in the book, in
function and class definitions, among other things.

Conditionals: A conditional statement either executes a block or not, depending
on a condition (Boolean expression). Several conditionals can be strung together
with if/elif/ else. A variation on this theme is the conditional expression, a if
b else c.

Assertions: An assertion simply asserts that something (a Boolean expression)
is true, optionally with a string explaining why it must be so. If the expression
happens to be false, the assertion brings your program to a halt (or actually raises
an exception—more on that in Chapter 8). It’s better to find an error early than to
let it sneak around your program until you don’t know where it originated.

http://dx.doi.org/10.1007/978-1-4842-0028-5_8

Chapter 5 ■ Conditionals, Loops, and Some Other Statements

99

Loops: You either can execute a block for each element in a sequence (such as
a range of numbers) or can continue executing it while a condition is true. To
skip the rest of the block and continue with the next iteration, use the continue
statement; to break out of the loop, use the break statement. Optionally, you may
add an else clause at the end of the loop, which will be executed if you didn’t
execute any break statements inside the loop.

Comprehension: These aren’t really statements—they are expressions that
look a lot like loops, which is why I grouped them with the looping statements.
Through list comprehension, you can build new lists from old ones, applying
functions to the elements, filtering out those you don’t want, and so on.
The technique is quite powerful, but in many cases, using plain loops and
conditionals (which will always get the job done) may be more readable. Similar
expressions can be used to construct dictionaries.

pass, del, exec, and eval: The pass statement does nothing, which can be useful
as a placeholder, for example. The del statement is used to delete variables or
parts of a data structure but cannot be used to delete values. The exec function
is used to execute a string as if it were a Python program. The eval function
evaluates an expression written in a string and returns the result.

New Functions in This Chapter

Function Description

chr(n) Returns a one-character string when passed ordinal n (0 ≤ n < 256)

eval(source[, globals[, locals]]) Evaluates a string as an expression and returns the value

exec(source[, globals[, locals]]) Evaluates and executes a string as a statement

enumerate(seq) Yields (index, value) pairs suitable for iteration

ord(c) Returns the integer ordinal value of a one-character string

range([start,] stop[, step]) Creates a list of integers

reversed(seq) Yields the values of seq in reverse order, suitable for iteration

sorted(seq[, cmp][, key][, reverse]) Returns a list with the values of seq in sorted order

xrange([start,] stop[, step]) Creates an xrange object, used for iteration

zip(seq1, seq2,…) Creates a new sequence suitable for parallel iteration

What Now?
Now you’ve cleared the basics. You can implement any algorithm you can dream up; you can read in
parameters and print out the results. In the next couple of chapters, you learn about something that will help
you write larger programs without losing the big picture. That something is called abstraction.

101© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_6

CHAPTER 6

Abstraction

In this chapter, you’ll learn how to group statements into functions, which enables you to tell the computer
how to do something, and to tell it only once. You won’t need to give it the same detailed instructions over
and over. The chapter provides a thorough introduction to parameters and scoping, and you’ll learn what
recursion is and what it can do for your programs.

Laziness Is a Virtue
The programs we’ve written so far have been pretty small, but if you want to make something bigger, you’ll
soon run into trouble. Consider what happens if you have written some code in one place and need to use
it in another place as well. For example, let’s say you wrote a snippet of code that computed some Fibonacci
numbers (a series of numbers in which each number is the sum of the two previous ones).

fibs = [0, 1]
for i in range(8):
 fibs.append(fibs[-2] + fibs[-1])

After running this, fibs contains the first ten Fibonacci numbers.

>>> fibs
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

This is all right if what you want is to calculate the first ten Fibonacci numbers once. You could even change
the for loop to work with a dynamic range, with the length of the resulting sequence supplied by the user.

fibs = [0, 1]
num = int(input('How many Fibonacci numbers do you want? '))
for i in range(num-2):
 fibs.append(fibs[-2] + fibs[-1])
print(fibs)

But what if you also want to use the numbers for something else? You could certainly just write the same
loop again when needed, but what if you had written a more complicated piece of code, such as one that
downloaded a set of web pages and computed the frequencies of all the words used? Would you still want to
write all the code several times, once for each time you needed it? No, real programmers don’t do that. Real
programmers are lazy—not lazy in a bad way, but in the sense that they don’t do unnecessary work.

Chapter 6 ■ Abstraction

102

So what do real programmers do? They make their programs more abstract. You could make the
previous program more abstract as follows:

num = input('How many numbers do you want? ')
print(fibs(num))

Here, only what is specific to this program is written concretely (reading in the number and printing out the
result). Actually computing the Fibonacci numbers is done in an abstract manner: you simply tell the computer
to do it. You don’t say specifically how it should be done. You create a function called fibs and use it when you
need the functionality of the little Fibonacci program. It saves you a lot of effort if you need it in several places.

Abstraction and Structure
Abstraction can be useful as a labor saver, but it is actually more important than that. It is the key to making
computer programs understandable to humans (which is essential, whether you’re writing them or reading
them). The computers themselves are perfectly happy with very concrete and specific instructions, but
humans generally aren’t. If you ask me for directions to the cinema, for example, you wouldn’t want me to
answer, “Walk 10 steps forward, turn 90 degrees to your left, walk another 5 steps, turn 45 degrees to your
right, walk 123 steps.” You would soon lose track, wouldn’t you?

Now, if I instead told you to “Walk down this street until you get to a bridge, cross the bridge, and the
cinema is to your left,” you would certainly understand me. The point is that you already know how to walk
down the street and how to cross a bridge. You don’t need explicit instructions on how to do either.

You structure computer programs in a similar fashion. Your programs should be quite abstract, as in
“Download page, compute frequencies, and print the frequency of each word.” This is easily understandable.
In fact, let’s translate this high-level description to a Python program right now.

page = download_page()
freqs = compute_frequencies(page)
for word, freq in freqs:
 print(word, freq)

From reading this, anyone could understand what the program does. However, you haven’t explicitly said
anything about how it should do it. You just tell the computer to download the page and compute the frequencies.
The specifics of these operations will need to be written somewhere else—in separate function definitions.

Creating Your Own Functions
A function is something you can call (possibly with some parameters—the things you put in the
parentheses), which performs an action and returns a value.1 In general, you can tell whether something is
callable or not with the built-in function callable.

>>> import math
>>> x = 1
>>> y = math.sqrt
>>> callable(x)
False
>>> callable(y)
True

1Actually, functions in Python don’t always return values. You’ll learn more about this later in the chapter.

Chapter 6 ■ Abstraction

103

As you know from the previous section, creating functions is central to structured programming. So how do
you define a function? You do this with the def (or “function definition”) statement.

def hello(name):
 return 'Hello, ' + name + '!'

After running this, you have a new function available, called hello, which returns a string with a greeting for
the name given as the only parameter. You can use this function just like you use the built-in ones.

>>> print(hello('world'))
Hello, world!
>>> print(hello('Gumby'))
Hello, Gumby!

Pretty neat, huh? Consider how you would write a function that returned a list of Fibonacci numbers. Easy!
You just use the code from before, but instead of reading in a number from the user, you receive it as a
parameter.

def fibs(num):
 result = [0, 1]
 for i in range(num-2):
 result.append(result[-2] + result[-1])
 return result

After running this statement, you’ve basically told the interpreter how to calculate Fibonacci numbers. Now
you don’t have to worry about the details anymore. You simply use the function fibs.

>>> fibs(10)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
>>> fibs(15)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

The names num and result are quite arbitrary in this example, but return is important. The return
statement is used to return something from the function (which is also how we used it in the preceding
hello function).

Documenting Functions
If you want to document your functions so that you’re certain that others will understand them later, you
can add comments (beginning with the hash sign, #). Another way of writing comments is simply to write
strings by themselves. Such strings can be particularly useful in some places, such as immediately after a
def statement (and at the beginning of a module or a class—you learn more about classes in Chapter 7 and
modules in Chapter 10). If you put a string at the beginning of a function, it is stored as part of the function
and is called a docstring. The following code demonstrates how to add a docstring to a function:

def square(x):
 'Calculates the square of the number x.'
 return x * x

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 6 ■ Abstraction

104

The docstring may be accessed like this:

>>> square.__doc__
'Calculates the square of the number x.'

■■ Note  _ _doc_ _ is a function attribute. You’ll learn a lot more about attributes in Chapter 7. The double
underscores in the attribute name mean that this is a special attribute. Special or “magic” attributes like this
are discussed in Chapter 9.

A special built-in function called help can be quite useful. If you use it in the interactive interpreter, you can
get information about a function, including its docstring.

>>> help(square)
Help on function square in module __main__:

square(x)
Calculates the square of the number x.

You meet the help function again in Chapter 10.

Functions That Aren’t Really Functions
Functions, in the mathematical sense, always return something that is calculated from their parameters.
In Python, some functions don’t return anything. In other languages (such as Pascal), such functions may
be called other things (such as procedures), but in Python, a function is a function, even if it technically
isn’t. Functions that don’t return anything simply don’t have a return statement. Or, if they do have return
statements, there is no value after the word return.

def test():
 print('This is printed')
 return
 print('This is not')

Here, the return statement is used simply to end the function.

>>> x = test()
This is printed

As you can see, the second print statement is skipped. (This is a bit like using break in loops, except that you
break out of the function.) But if test doesn’t return anything, what does x refer to? Let’s see:

>>> x
>>>

Nothing there. Let’s look a bit closer.

>>> print(x)
None

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_9
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 6 ■ Abstraction

105

That’s a familiar value: None. So all functions do return something; it’s just that they return None when you
don’t tell them what to return.

■■ Caution  Don’t let this default behavior trip you up. If you return values from inside if statements and the
like, be sure you’ve covered every case so you don’t accidentally return None when the caller is expecting a
sequence, for example.

The Magic of Parameters
Using functions is pretty straightforward, and creating them isn’t all that complicated either. The way
parameters work may, however, take some getting used to. First, let’s do the basics.

Where Do the Values Come From?
Sometimes, when defining a function, you may wonder where parameters get their values.

In general, you shouldn’t worry about that. Writing a function is a matter of providing a service to
whatever part of your program (and possibly even other programs) might need it. Your task is to make sure
the function does its job if it is supplied with acceptable parameters, and preferably fails in an obvious
manner if the parameters are wrong. (You do this with assert or exceptions in general. You’ll learn more
about exceptions in Chapter 8.)

■■ Note  The variables you write after your function name in def statements are often called the formal
parameters of the function. The values you supply when you call the function are called the actual parameters,
or arguments. In general, I won’t be too picky about the distinction. If it is important, I will call the actual
parameters values to distinguish them from the formal parameters, which are more like variables.

Can I Change a Parameter?
So your function gets a set of values through its parameters. Can you change them? And what happens if you
do? Well, the parameters are just variables like all others, so this works as you would expect. Assigning a new
value to a parameter inside a function won’t change the outside world at all.

>>> def try_to_change(n):
... n = 'Mr. Gumby'
...
>>> name = 'Mrs. Entity'
>>> try_to_change(name)
>>> name
'Mrs. Entity'

http://dx.doi.org/10.1007/978-1-4842-0028-5_8

Chapter 6 ■ Abstraction

106

Inside try_to_change, the parameter n gets a new value, but as you can see, that doesn’t affect the variable
name. After all, it’s a completely different variable. It’s just as if you did something like this:

>>> name = 'Mrs. Entity'
>>> n = name # This is almost what happens when passing a parameter
>>> n = 'Mr. Gumby' # This is done inside the function
>>> name
'Mrs. Entity'

Here, the result is obvious. While the variable n is changed, the variable name is not. Similarly, when you
rebind (assign to) a parameter inside a function, variables outside the function will not be affected.

■■ Note  Parameters are kept in what is called a local scope. Scoping is discussed later in this chapter.

Strings (and numbers and tuples) are immutable, which means that you can’t modify them (that is, you
can only replace them with new values). Therefore, there isn’t much to say about them as parameters. But
consider what happens if you use a mutable data structure such as a list.

>>> def change(n):
... n[0] = 'Mr. Gumby'
...
>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> change(names)
>>> names
['Mr. Gumby', 'Mrs. Thing']

In this example, the parameter is changed. There is one crucial difference between this example and the
previous one. In the previous one, we simply gave the local variable a new value, but in this one, we actually
modify the list to which the variable names is bound. Does that sound strange? It’s not really that strange.
Let’s do it again without the function call.

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names # Again pretending to pass names as a parameter
>>> n[0] = 'Mr. Gumby' # Change the list
>>> names
['Mr. Gumby', 'Mrs. Thing']

You’ve seen this sort of thing before. When two variables refer to the same list, they . . . refer to the same list.
It’s really as simple as that. If you want to avoid this, you must make a copy of the list. When you do slicing on
a sequence, the returned slice is always a copy. Thus, if you make a slice of the entire list, you get a copy.

>>> names = ['Mrs. Entity', 'Mrs. Thing']
>>> n = names[:]

Chapter 6 ■ Abstraction

107

Now n and names contain two separate (nonidentical) lists that are equal.

>>> n is names
False
>>> n == names
True

If you change n now (as you did inside the function change), it won’t affect names.

>>> n[0] = 'Mr. Gumby'
>>> n
['Mr. Gumby', 'Mrs. Thing']
>>> names
['Mrs. Entity', 'Mrs. Thing']

Let’s try this trick with change.

>>> change(names[:])
>>> names
['Mrs. Entity', 'Mrs. Thing']

Now the parameter n contains a copy, and your original list is safe.

■■ Note  In case you’re wondering, names that are local to a function, including parameters, do not clash with
names outside the function (that is, global ones). For more information about this, see the discussion of scoping
later in this chapter.

Why Would I Want to Modify My Parameters?
Using a function to change a data structure (such as a list or a dictionary) can be a good way of introducing
abstraction into your program. Let’s say you want to write a program that stores names and that allows you
to look up people by their first, middle, or last names. You might use a data structure like this:

storage = {}
storage['first'] = {}
storage['middle'] = {}
storage['last'] = {}

The data structure storage is a dictionary with three keys: 'first', 'middle', and 'last'. Under each of
these keys, you store another dictionary. In these subdictionaries, you’ll use names (first, middle, or last) as
keys and insert lists of people as values. For example, to add me to this structure, you could do the following:

>>> me = 'Magnus Lie Hetland'
>>> storage['first']['Magnus'] = [me]
>>> storage['middle']['Lie'] = [me]
>>> storage['last']['Hetland'] = [me]

Chapter 6 ■ Abstraction

108

Under each key, you store a list of people. In this case, the lists contain only me.
Now, if you want a list of all the people registered who have the middle name Lie, you could do the

following:

>>> storage['middle']['Lie']
['Magnus Lie Hetland']

As you can see, adding people to this structure is a bit tedious, especially when you get more people with the
same first, middle, or last names, because then you need to extend the list that is already stored under that
name. Let’s add my sister, and let’s assume you don’t know what is already stored in the database.

>>> my_sister = 'Anne Lie Hetland'
>>> storage['first'].setdefault('Anne', []).append(my_sister)
>>> storage['middle'].setdefault('Lie', []).append(my_sister)
>>> storage['last'].setdefault('Hetland', []).append(my_sister)
>>> storage['first']['Anne']
['Anne Lie Hetland']
>>> storage['middle']['Lie']
['Magnus Lie Hetland', 'Anne Lie Hetland']

Imagine writing a large program filled with updates like this. It would quickly become quite unwieldy.
The point of abstraction is to hide all the gory details of the updates, and you can do that with functions.

Let’s first make a function to initialize a data structure.

def init(data):
 data['first'] = {}
 data['middle'] = {}
 data['last'] = {}

In the preceding code, I’ve simply moved the initialization statements inside a function. You can use it like
this:

>>> storage = {}
>>> init(storage)
>>> storage
{'middle': {}, 'last': {}, 'first': {}}

As you can see, the function has taken care of the initialization, making the code much more readable.

■■ Note  The keys of a dictionary don’t have a specific order, so when a dictionary is printed out, the order
may vary. If the order is different in your interpreter, don’t worry about it.

Before writing a function for storing names, let’s write one for getting them.

def lookup(data, label, name):
 return data[label].get(name)

Chapter 6 ■ Abstraction

109

With lookup, you can take a label (such as 'middle') and a name (such as 'Lie') and get a list of full names
returned. In other words, assuming my name was stored, you could do this:

>>> lookup(storage, 'middle', 'Lie')
['Magnus Lie Hetland']

It’s important to notice that the list that is returned is the same list that is stored in the data structure. So if
you change the list, the change also affects the data structure. (This is not the case if no people are found;
then you simply return None.)

Now it’s time to write the function that stores a name in your structure (don’t worry if it doesn’t make
sense to you immediately).

def store(data, full_name):
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'

 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

The store function performs the following steps:

	 1.	 You enter the function with the parameters data and full_name set to some
values that you receive from the outside world.

	 2.	 You make yourself a list called names by splitting full_name.

	 3.	 If the length of names is 2 (you have only a first name and a last name), you insert
an empty string as a middle name.

	 4.	 You store the strings 'first', 'middle', and 'last' as a tuple in labels. (You
could certainly use a list here; it’s just convenient to drop the brackets.)

	 5.	 You use the zip function to combine the labels and names so they line up
properly, and for each pair (label, name), you do the following:

•	 Fetch the list belonging to the given label and name.

•	 Append full_name to that list, or insert a new list if needed.

Let’s try it out:

>>> MyNames = {}
>>> init(MyNames)
>>> store(MyNames, 'Magnus Lie Hetland')
>>> lookup(MyNames, 'middle', 'Lie')
['Magnus Lie Hetland']

Chapter 6 ■ Abstraction

110

It seems to work. Let’s try some more.

>>> store(MyNames, 'Robin Hood')
>>> store(MyNames, 'Robin Locksley')
>>> lookup(MyNames, 'first', 'Robin')
['Robin Hood', 'Robin Locksley']
>>> store(MyNames, 'Mr. Gumby')
>>> lookup(MyNames, 'middle', '')
['Robin Hood', 'Robin Locksley', 'Mr. Gumby']

As you can see, if more people share the same first, middle, or last name, you can retrieve them all together.

■■ Note  This sort of application is well suited to object-oriented programming, which is explained in the next
chapter.

What If My Parameter Is Immutable?
In some languages (such as C++, Pascal, and Ada), rebinding parameters and having these changes affect
variables outside the function is an everyday thing. In Python, it’s not directly possible; you can modify only
the parameter objects themselves. But what if you have an immutable parameter, such as a number?

Sorry, but it can’t be done. What you should do is return all the values you need from your function (as a
tuple, if there is more than one). For example, a function that increments the numeric value of a variable by
one could be written like this:

>>> def inc(x): return x + 1
...
>>> foo = 10
>>> foo = inc(foo)
>>> foo
11

If you really wanted to modify your parameter, you could use a trick such as wrapping your value in a list,
like this:

>>> def inc(x): x[0] = x[0] + 1
...
>>> foo = [10]
>>> inc(foo)
>>> foo
[11]

Simply returning the new value would be a cleaner solution, though.

Chapter 6 ■ Abstraction

111

Keyword Parameters and Defaults
The parameters we’ve been using until now are called positional parameters because their positions are
important—more important than their names, in fact. The techniques introduced in this section let you
sidestep the positions altogether, and while they may take some getting used to, you will quickly see how
useful they are as your programs grow in size.

Consider the following two functions:

def hello_1(greeting, name):
 print('{}, {}!'.format(greeting, name))

def hello_2(name, greeting):
 print('{}, {}!'.format(name, greeting))

They both do exactly the same thing, only with their parameter names reversed.

>>> hello_1('Hello', 'world')
Hello, world!
>>> hello_2('Hello', 'world')
Hello, world!

Sometimes (especially if you have many parameters) the order may be hard to remember. To make things
easier, you can supply the name of your parameter.

>>> hello_1(greeting='Hello', name='world')
Hello, world!

The order here doesn’t matter at all.

>>> hello_1(name='world', greeting='Hello')
Hello, world!

The names do, however (as you may have gathered).

>>> hello_2(greeting='Hello', name='world')
world, Hello!

The parameters that are supplied with a name like this are called keyword parameters. On their own, the key
strength of keyword parameters is that they can help clarify the role of each parameter. Instead of needing to
use some odd and mysterious call like this:

>>> store('Mr. Brainsample', 10, 20, 13, 5)

you could use this:

>>> store(patient='Mr. Brainsample', hour=10, minute=20, day=13, month=5)

Even though it takes a bit more typing, it is absolutely clear what each parameter does. Also, if you get the
order mixed up, it doesn’t matter.

Chapter 6 ■ Abstraction

112

What really makes keyword arguments rock, however, is that you can give the parameters in the
function default values.

def hello_3(greeting='Hello', name='world'):
 print('{}, {}!'.format(greeting, name))

When a parameter has a default value like this, you don’t need to supply it when you call the function! You
can supply none, some, or all, as the situation might dictate.

>>> hello_3()
Hello, world!
>>> hello_3('Greetings')
Greetings, world!
>>> hello_3('Greetings', 'universe')
Greetings, universe!

As you can see, this works well with positional parameters, except that you must supply the greeting if
you want to supply the name. What if you want to supply only the name, leaving the default value for the
greeting? I’m sure you’ve guessed it by now.

>>> hello_3(name='Gumby')
Hello, Gumby!

Pretty nifty, huh? And that’s not all. You can combine positional and keyword parameters. The only
requirement is that all the positional parameters come first. If they don’t, the interpreter won’t know which
ones they are (that is, which position they are supposed to have).

■■ Note  Unless you know what you’re doing, you might want to avoid mixing positional and keyword
parameters. That approach is generally used when you have a small number of mandatory parameters and
many modifying parameters with default values.

For example, our hello function might require a name, but allow us to (optionally) specify the greeting and
the punctuation.

def hello_4(name, greeting='Hello', punctuation='!'):
 print('{}, {}{}'.format(greeting, name, punctuation))

This function can be called in many ways. Here are some of them:

>>> hello_4('Mars')
Hello, Mars!
>>> hello_4('Mars', 'Howdy')
Howdy, Mars!
>>> hello_4('Mars', 'Howdy', '...')
Howdy, Mars...
>>> hello_4('Mars', punctuation='.')
Hello, Mars.
>>> hello_4('Mars', greeting='Top of the morning to ya')
Top of the morning to ya, Mars!
>>> hello_4()

Chapter 6 ■ Abstraction

113

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: hello_4() missing 1 required positional argument: 'name'

■■ Note  If I had given name a default value as well, the last example wouldn’t have raised an exception.

That’s pretty flexible, isn’t it? And we didn’t really need to do much to achieve it either. In the next section we
get even more flexible.

Collecting Parameters
Sometimes it can be useful to allow the user to supply any number of parameters. For example, in the
name-storing program (described in the section “Why Would I Want to Modify My Parameters?” earlier in
this chapter), you can store only one name at a time. It would be nice to be able to store more names, like this:

>>> store(data, name1, name2, name3)

For this to be useful, you should be allowed to supply as many names as you want. Actually, that’s quite
possible.

Try the following function definition:

def print_params(*params):
 print(params)

Here, I seemingly specify only one parameter, but it has an odd little star (or asterisk) in front of it. What does
that mean? Let’s call the function with a single parameter and see what happens.

>>> print_params('Testing')
('Testing',)

You can see that what is printed out is a tuple because it has a comma in it. So using a star in front of a
parameter puts it in a tuple? The plural in params ought to give a clue about what’s going on.

>>> print_params(1, 2, 3)
(1, 2, 3)

The star in front of the parameter puts all the values into the same tuple. It gathers them up, so to speak. And
of course we’ve seen this exact behavior in the previous chapter, in the discussion of sequence unpacking. In
assignments, the starred variable collects superfluous values in a list rather than a tuple, but other than that,
the two uses are quite similar. Let’s write another function:

def print_params_2(title, *params):
 print(title)
 print(params)

and try it:

>>> print_params_2('Params:', 1, 2, 3)
Params:
(1, 2, 3)

Chapter 6 ■ Abstraction

114

So the star means “Gather up the rest of the positional parameters.” If you don’t give any parameters to
gather, params will be an empty tuple.

>>> print_params_2('Nothing:')
Nothing:
()

Just as with assignments, the starred parameter may occur in other positions than the last. Unlike with
assignments, though, you have to do some extra work and specify the final parameters by name.

>>> def in_the_middle(x, *y, z):
... print(x, y, z)
...
>>> in_the_middle(1, 2, 3, 4, 5, z=7)
1 (2, 3, 4, 5) 7
>>> in_the_middle(1, 2, 3, 4, 5, 7)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: in_the_middle() missing 1 required keyword-only argument: 'z'

The star doesn’t collect keyword arguments.

>>> print_params_2('Hmm...', something=42)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: print_params_2() got an unexpected keyword argument 'something'

We can gather those with the double star.

>>> def print_params_3(**params):
... print(params)
...
>>> print_params_3(x=1, y=2, z=3)
{'z': 3, 'x': 1, 'y': 2}

As you can see, we get a dictionary rather than a tuple. These various techniques work well together.

def print_params_4(x, y, z=3, *pospar, **keypar):
 print(x, y, z)
 print(pospar)
 print(keypar)

This works just as expected.

>>> print_params_4(1, 2, 3, 5, 6, 7, foo=1, bar=2)
1 2 3
(5, 6, 7)
{'foo': 1, 'bar': 2}
>>> print_params_4(1, 2)
1 2 3
()
{}

Chapter 6 ■ Abstraction

115

By combining all these techniques, you can do quite a lot. If you wonder how some combination might work
(or whether it’s allowed), just try it! (In the next section, you’ll see how * and ** can be used when a function
is called as well, regardless of whether they were used in the function definition.)

Now, back to the original problem: how you can use this in the name-storing example. The solution is
shown here:

def store(data, *full_names):
 for full_name in full_names:
 names = full_name.split()
 if len(names) == 2: names.insert(1, '')
 labels = 'first', 'middle', 'last'
 for label, name in zip(labels, names):
 people = lookup(data, label, name)
 if people:
 people.append(full_name)
 else:
 data[label][name] = [full_name]

Using this function is just as easy as using the previous version, which accepted only one name.

>>> d = {}
>>> init(d)
>>> store(d, 'Han Solo')

But now you can also do this:

>>> store(d, 'Luke Skywalker', 'Anakin Skywalker')
>>> lookup(d, 'last', 'Skywalker')
['Luke Skywalker', 'Anakin Skywalker']

Reversing the Process
Now you’ve learned about gathering up parameters in tuples and dictionaries, but it is in fact possible to
do the “opposite” as well, with the same two operators, * and **. What might the opposite of parameter
gathering be? Let’s say we have the following function available:

def add(x, y):
 return x + y

■■ Note  You can find a more efficient version of this function in the operator module.

Also, let’s say you have a tuple with two numbers that you want to add.

params = (1, 2)

Chapter 6 ■ Abstraction

116

This is more or less the opposite of what we did previously. Instead of gathering the parameters, we want
to distribute them. This is simply done by using the * operator at the “other end”—that is, when calling the
function rather than when defining it.

>>> add(*params)
3

This works with parts of a parameter list, too, as long as the expanded part is last. You can use the same
technique with dictionaries, using the ** operator. Assuming that you have defined hello_3 as before, you
can do the following:

>>> params = {'name': 'Sir Robin', 'greeting': 'Well met'}
>>> hello_3(**params)
Well met, Sir Robin!

Using * (or **) both when you define and when you call the function will simply pass the tuple or dictionary
right through, so you might as well not have bothered.

>>> def with_stars(**kwds):
... print(kwds['name'], 'is', kwds['age'], 'years old')
...
>>> def without_stars(kwds):
... print(kwds['name'], 'is', kwds['age'], 'years old')
...
>>> args = {'name': 'Mr. Gumby', 'age': 42}
>>> with_stars(**args)
Mr. Gumby is 42 years old
>>> without_stars(args)
Mr. Gumby is 42 years old

As you can see, in with_stars, I use stars both when defining and when calling the function. In without_
stars, I don’t use the stars in either place but achieve exactly the same effect. So the stars are really useful
only if you use them either when defining a function (to allow a varying number of arguments) or when
calling a function (to “splice in” a dictionary or a sequence).

■■ Tip I t may be useful to use these splicing operators to “pass through” parameters, without worrying too
much about how many there are, and so forth. Here is an example:

def foo(x, y, z, m=0, n=0):
 print(x, y, z, m, n)
def call_foo(*args, **kwds):
 print("Calling foo!")
 foo(*args, **kwds)

This can be particularly useful when calling the constructor of a superclass (see Chapter 9 for more on that).

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 6 ■ Abstraction

117

Parameter Practice
With so many ways of supplying and receiving parameters, it’s easy to get confused. So let me tie it all
together with an example. First, let’s define some functions.

def story(**kwds):
 return 'Once upon a time, there was a ' \
 '{job} called {name}.'.format_map(kwds)

def power(x, y, *others):
 if others:
 print('Received redundant parameters:', others)
 return pow(x, y)

def interval(start, stop=None, step=1):
 'Imitates range() for step > 0'
 if stop is None: # If the stop is not supplied ...
 start, stop = 0, start # shuffle the parameters
 result = []

 i = start # We start counting at the start index
 while i < stop: # Until the index reaches the stop index ...
 result.append(i) # ... append the index to the result ...
 i += step # ... increment the index with the step (> 0)
 return result

Now let’s try them out.

>>> print(story(job='king', name='Gumby'))
Once upon a time, there was a king called Gumby.
>>> print(story(name='Sir Robin', job='brave knight'))
Once upon a time, there was a brave knight called Sir Robin.
>>> params = {'job': 'language', 'name': 'Python'}
>>> print(story(**params))
Once upon a time, there was a language called Python.
>>> del params['job']
>>> print(story(job='stroke of genius', **params))
Once upon a time, there was a stroke of genius called Python.
>>> power(2, 3)
8
>>> power(3, 2)
9
>>> power(y=3, x=2)
8
>>> params = (5,) * 2
>>> power(*params)
3125
>>> power(3, 3, 'Hello, world')
Received redundant parameters: ('Hello, world',)
27

Chapter 6 ■ Abstraction

118

>>> interval(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> interval(1, 5)
[1, 2, 3, 4]
>>> interval(3, 12, 4)
[3, 7, 11]
>>> power(*interval(3, 7))
Received redundant parameters: (5, 6)
81

Feel free to experiment with these functions and functions of your own until you are confident that you
understand how this stuff works.

Scoping
What are variables, really? You can think of them as names referring to values. So, after the assignment x =
1, the name x refers to the value 1. It’s almost like using dictionaries, where keys refer to values, except that
you’re using an “invisible” dictionary. Actually, this isn’t far from the truth. There is a built-in function called
vars, which returns this dictionary:

>>> x = 1
>>> scope = vars()
>>> scope['x']
1
>>> scope['x'] += 1
>>> x
2

■■ Caution  In general, you should not modify the dictionary returned by vars because, according to the
official Python documentation, the result is undefined. In other words, you might not get the result you’re after.

This sort of “invisible dictionary” is called a namespace or scope. So, how many namespaces are there? In
addition to the global scope, each function call creates a new one.

>>> def foo(): x = 42
...
>>> x = 1
>>> foo()
>>> x
1

Here foo changes (rebinds) the variable x, but when you look at it in the end, it hasn’t changed after all.
That’s because when you call foo, a new namespace is created, which is used for the block inside foo. The
assignment x = 42 is performed in this inner scope (the local namespace), and therefore it doesn’t affect the
x in the outer (global) scope. Variables that are used inside functions like this are called local variables (as
opposed to global variables). The parameters work just like local variables, so there is no problem in having
a parameter with the same name as a global variable.

Chapter 6 ■ Abstraction

119

>>> def output(x): print(x)
...
>>> x = 1
>>> y = 2
>>> output(y)
2

So far, so good. But what if you want to access the global variables inside a function? As long as you only
want to read the value of the variable (that is, you don’t want to rebind it), there is generally no problem.

>>> def combine(parameter): print(parameter + external)
...
>>> external = 'berry'
>>> combine('Shrub')
Shrubberry

■■ Caution  Referencing global variables like this is a source of many bugs. Use global variables with care.

THE PROBLEM OF SHADOWING

Reading the value of global variables is not a problem in general, but one thing may make it
problematic. If a local variable or parameter exists with the same name as the global variable you want
to access, you can’t do it directly. The global variable is shadowed by the local one.

If needed, you can still gain access to the global variable by using the function globals, a close relative
of vars, which returns a dictionary with the global variables. (locals returns a dictionary with the local
variables.)

For example, if you had a global variable called parameter in the previous example, you couldn’t access
it from within combine because you have a parameter with the same name. In a pinch, however, you
could have referred to it as globals()['parameter'].

>>> def combine(parameter):
... print(parameter + globals()['parameter'])
...
>>> parameter = 'berry'
>>> combine('Shrub')
Shrubberry

Chapter 6 ■ Abstraction

120

Rebinding global variables (making them refer to some new value) is another matter. If you assign a value
to a variable inside a function, it automatically becomes local unless you tell Python otherwise. And how do
you think you can tell it to make a variable global?

>>> x = 1
>>> def change_global():
... global x
... x = x + 1
...
>>> change_global()
>>> x
2

Piece of cake!

NESTED SCOPES

Python functions may be nested—you can put one inside another. Here is an example:

def foo():
 def bar():
 print("Hello, world!")
 bar()

Nesting is normally not all that useful, but there is one particular application that stands out: using one
function to “create” another. This means that you can (among other things) write functions like the
following:

def multiplier(factor):
 def multiplyByFactor(number):
 return number * factor
 return multiplyByFactor

One function is inside another, and the outer function returns the inner one; that is, the function itself is
returned—it is not called. What’s important is that the returned function still has access to the scope
where it was defined; in other words, it carries its environment (and the associated local variables) with it!

Each time the outer function is called, the inner one gets redefined, and each time, the variable factor
may have a new value. Because of Python’s nested scopes, this variable from the outer local scope (of
multiplier) is accessible in the inner function later, as follows:

>>> double = multiplier(2)
>>> double(5)
10
>>> triple = multiplier(3)
>>> triple(3)
9
>>> multiplier(5)(4)
20

Chapter 6 ■ Abstraction

121

A function such as multiplyByFactor that stores its enclosing scopes is called a closure.

Normally, you cannot rebind variables in outer scopes. If you want, though, you can use the nonlocal
keyword. It is used in much the same way as global, and it lets you assign to variables in outer (but
nonglobal) scopes.

Recursion
You’ve learned a lot about making functions and calling them. You also know that functions can call other
functions. What might come as a surprise is that functions can call themselves.

If you haven’t encountered this sort of thing before, you may wonder what this word recursion is.
It simply means referring to (or, in our case, “calling”) yourself. One common (though admittedly silly)
definition goes like this:

recursion \ri-'k&r-zh&n\ n: see recursion.

If you search for “recursion” in Google, you’ll see something similar.
Recursive definitions (including recursive function definitions) include references to the term they are

defining. Depending on the amount of experience you have with it, recursion can be either mind-boggling
or quite straightforward. For a deeper understanding of it, you should probably buy yourself a good textbook
on computer science, but playing around with the Python interpreter can certainly help.

In general, you don’t want recursive definitions like the one I gave for the word recursion, because you
won’t get anywhere. You look up recursion, which again tells you to look up recursion, and so on. A similar
function definition would be

def recursion():
 return recursion()

It is obvious that this doesn’t do anything—it’s just as silly as the mock dictionary definition. But what
happens if you run it? You’re welcome to try. You’ll find that the program simply crashes (raises an
exception) after a while. Theoretically, it should simply run forever. However, each time a function is called,
it uses up a little memory, and after enough function calls have been made (before the previous calls have
returned), there is no more room, and the program ends with the error message maximum recursion depth
exceeded.

The sort of recursion you have in this function is called infinite recursion (just as a loop beginning
with while True and containing no break or return statements is an infinite loop) because it never ends
(in theory). What you want is a recursive function that does something useful. A useful recursive function
usually consists of the following parts:

•	 A base case (for the smallest possible problem) when the function returns a value
directly

•	 A recursive case, which contains one or more recursive calls on smaller parts of the
problem

The point here is that by breaking the problem up into smaller pieces, the recursion can’t go on forever
because you always end up with the smallest possible problem, which is covered by the base case.

So you have a function calling itself. But how is that even possible? It’s really not as strange as it might
seem. As I said before, each time a function is called, a new namespace is created for that specific call. That
means that when a function calls “itself,” you are actually talking about two different functions (or, rather,
the same function with two different namespaces). You might think of it as one creature of a certain species
talking to another one of the same species.

Chapter 6 ■ Abstraction

122

Two Classics: Factorial and Power
In this section, we examine two classic recursive functions. First, let’s say you want to compute the factorial
of a number n. The factorial of n is defined as n × (n–1) × (n–2) × . . . × 1. It’s used in many mathematical
applications (for example, in calculating how many different ways there are of putting n people in a line).
How do you calculate it? You could always use a loop.

def factorial(n):
 result = n
 for i in range(1, n):
 result *= i
 return result

This works and is a straightforward implementation. Basically, what it does is this: first, it sets the result to n;
then, the result is multiplied by each number from 1 to n–1 in turn; finally, it returns the result. But you can
do this differently if you like. The key is the mathematical definition of the factorial, which can be stated as
follows:

•	 The factorial of 1 is 1.

•	 The factorial of a number n greater than 1 is the product of n and the factorial of n–1.

As you can see, this definition is exactly equivalent to the one given at the beginning of this section.
Now consider how you implement this definition as a function. It is actually pretty straightforward, once

you understand the definition itself.

def factorial(n):
 if n == 1:
 return 1
 else:
 return n * factorial(n - 1)

This is a direct implementation of the definition. Just remember that the function call factorial(n) is a
different entity from the call factorial(n - 1).

Let’s consider another example. Assume you want to calculate powers, just like the built-in function pow,
or the operator **. You can define the (integer) power of a number in several different ways, but let’s start with
a simple one: power(x, n) (x to the power of n) is the number x multiplied by itself n - 1 times (so that x is
used as a factor n times). In other words, power(2, 3) is 2 multiplied with itself twice, or 2 × 2 × 2 = 8.

This is easy to implement.

def power(x, n):
 result = 1
 for i in range(n):
 result *= x
 return result

A sweet and simple little function, but again you can change the definition to a recursive one:

•	 power(x, 0) is 1 for all numbers x.

•	 power(x, n) for n > 0 is the product of x and power(x, n - 1).

Chapter 6 ■ Abstraction

123

Again, as you can see, this gives exactly the same result as in the simpler, iterative definition.

Understanding the definition is the hardest part—implementing it is easy.

def power(x, n):
 if n == 0:
 return 1
 else:
 return x * power(x, n - 1)

Again, I have simply translated my definition from a slightly formal textual description into a programming
language (Python).

■■ Tip  If a function or an algorithm is complex and difficult to understand, clearly defining it in your own
words before actually implementing it can be very helpful. Programs in this sort of “almost-programming
language” are often referred to as pseudocode.

So what is the point of recursion? Can’t you just use loops instead? The truth is yes, you can, and in most
cases, it will probably be (at least slightly) more efficient. But in many cases, recursion can be more
readable—sometimes much more readable—especially if one understands the recursive definition of a
function. And even though you could conceivably avoid ever writing a recursive function, as a programmer
you will most likely have to understand recursive algorithms and functions created by others, at the very
least.

Another Classic: Binary Search
As a final example of recursion in practice, let’s take a look at the algorithm called binary search.

You probably know of the game where you are supposed to guess what someone is thinking about by
asking 20 yes-or-no questions. To make the most of your questions, you try to cut the number of possibilities
in (more or less) half. For example, if you know the subject is a person, you might ask, “Are you thinking of a
woman?” You don’t start by asking, “Are you thinking of John Cleese?” unless you have a very strong hunch.
A version of this game for those more numerically inclined is to guess a number. For example, your partner is
thinking of a number between 1 and 100, and you have to guess which one it is. Of course, you could do it in
100 guesses, but how many do you really need?

As it turns out, you need only seven questions. The first one is something like “Is the number greater
than 50?” If it is, then you ask, “Is it greater than 75?” You keep halving the interval (splitting the difference)
until you find the number. You can do this without much thought.

The same tactic can be used in many different contexts. One common problem is to find out whether
a number is to be found in a (sorted) sequence and even to find out where it is. Again, you follow the same
procedure: “Is the number to the right of the middle of the sequence?” If it isn’t, “Is it in the second quarter
(to the right of the middle of the left half)?” and so on. You keep an upper and a lower limit to where the
number may be and keep splitting that interval in two with every question.

Chapter 6 ■ Abstraction

124

The point is that this algorithm lends itself naturally to a recursive definition and implementation. Let’s
review the definition first, to make sure we know what we’re doing:

•	 If the upper and lower limits are the same, they both refer to the correct position of
the number, so return it.

•	 Otherwise, find the middle of the interval (the average of the upper and lower
bound), and find out if the number is in the right or left half. Keep searching in the
proper half.

The key to the recursive case is that the numbers are sorted, so when you have found the middle
element, you can just compare it to the number you’re looking for. If your number is larger, then it must
be to the right, and if it is smaller, it must be to the left. The recursive part is “Keep searching in the proper
half,” because the search will be performed in exactly the manner described in the definition. (Note that the
search algorithm returns the position where the number should be—if it’s not present in the sequence, this
position will, naturally, be occupied by another number.)

You’re now ready to implement a binary search.

def search(sequence, number, lower, upper):
 if lower == upper:
 assert number == sequence[upper]
 return upper
 else:
 middle = (lower + upper) // 2
 if number > sequence[middle]:
 return search(sequence, number, middle + 1, upper)
 else:
 return search(sequence, number, lower, middle)

This does exactly what the definition said it should: if lower == upper, then return upper, which is the
upper limit. Note that you assume (assert) that the number you are looking for (number) has actually been
found (number == sequence[upper]). If you haven’t reached your base case yet, you find the middle, check
whether your number is to the left or right and call search recursively with new limits. You could even make
this easier to use by making the limit specifications optional. You simply give lower and upper default values
and add the following conditional to the beginning of the function definition:

def search(sequence, number, lower=0, upper=None):
 if upper is None: upper = len(sequence) - 1
 ...

Now, if you don’t supply the limits, they are set to the first and last positions of the sequence. Let’s see if this
works.

>>> seq = [34, 67, 8, 123, 4, 100, 95]
>>> seq.sort()
>>> seq
[4, 8, 34, 67, 95, 100, 123]
>>> search(seq, 34)
2
>>> search(seq, 100)
5

Chapter 6 ■ Abstraction

125

But why go to all this trouble? For one thing, you could simply use the list method index, and if you wanted
to implement this yourself, you could just make a loop starting at the beginning and iterating along until you
found the number.

Sure, using index is just fine. But using a simple loop may be a bit inefficient. Remember I said you
needed seven questions to find one number (or position) among 100? And the loop obviously needs 100
questions in the worst-case scenario. “Big deal,” you say. But if the list has 100,000,000,000,000,000,000,000,0
00,000,000,000 elements and has the same number of questions with a loop (perhaps a somewhat unrealistic
size for a Python list), this sort of thing starts to matter. Binary search would then need only 117 questions.
Pretty efficient, huh?2

■■ Tip  You can actually find a standard implementation of binary search in the bisect module.

THROWING FUNCTIONS AROUND

By now, you are probably used to using functions just like other objects (strings, number, sequences,
and so on) by assigning them to variables, passing them as parameters, and returning them from
other functions. Some programming languages (such as Scheme or Lisp) use functions in this way to
accomplish almost everything. Even though you usually don’t rely that heavily on functions in Python
(you usually make your own kinds of objects—more about that in the next chapter), you can.

Python has a few functions that are useful for this sort of “functional programming”: map, filter, and
reduce. The map and filter functions are not really all that useful in current versions of Python, and
you should probably use list comprehensions instead. You can use map to pass all the elements of a
sequence through a given function.

>>> list(map(str, range(10))) # Equivalent to [str(i) for i in range(10)]
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

You use filter to filter out items based on a Boolean function.

>>> def func(x):
... return x.isalnum()
...
>>> seq = ["foo", "x41", "?!", "***"]
>>> list(filter(func, seq))
['foo', 'x41']

For this example, using a list comprehension would mean you didn’t need to define the custom function.

>>> [x for x in seq if x.isalnum()]
['foo', 'x41']

2In fact, with the estimated number of particles in the observable universe at 1087, you would need only about 290
questions to discern between them!

Chapter 6 ■ Abstraction

126

Actually, there is a feature called lambda expressions,3 which lets you define simple functions in-line
(primarily used with map, filter, and reduce).

>>> filter(lambda x: x.isalnum(), seq)
['foo', 'x41']

Isn’t the list comprehension more readable, though?

The reduce function cannot easily be replaced by list comprehensions, but you probably won’t
need its functionality all that often (if ever). It combines the first two elements of a sequence with a
given function, combines the result with the third element, and so on, until the entire sequence has
been processed and a single result remains. For example, if you wanted to sum all the numbers of a
sequence, you could use reduce with lambda x, y: x+y (still using the same numbers).4

>>> numbers = [72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]
>>> from functools import reduce
>>> reduce(lambda x, y: x + y, numbers)
1161

Of course, here you could just as well have used the built-in function sum.

A Quick Summary
In this chapter, you learned several things about abstraction in general, and functions in particular:

Abstraction: Abstraction is the art of hiding unnecessary details. You can make
your program more abstract by defining functions that handle the details.

Function definition: Functions are defined with the def statement. They are
blocks of statements that receive values (parameters) from the “outside world”
and may return one or more values as the result of their computation.

Parameters: Functions receive what they need to know in the form of
parameters—variables that are set when the function is called. There are two
types of parameters in Python: positional parameters and keyword parameters.
Parameters can be made optional by giving them default values.

Scopes: Variables are stored in scopes (also called namespaces). There are two
main scopes in Python: the global scope and the local scope. Scopes may be
nested.

Recursion: A function can call itself—and if it does, it’s called recursion.
Everything you can do with recursion can also be done by loops, but sometimes a
recursive function is more readable.

Functional programming: Python has some facilities for programming in a
functional style. Among these are lambda expressions and the map, filter, and
reduce functions.

3The name “lambda” comes from the Greek letter, which is used in mathematics to indicate an anonymous function.
4Actually, instead of this lambda function, you could import the function add from the operator module, which has
a function for each of the built-in operators. Using functions from the operator module is always more efficient than
using your own functions.

Chapter 6 ■ Abstraction

127

New Functions in This Chapter
Function Description

map(func, seq[, seq, ...]) Applies the function to all the elements in the sequences

filter(func, seq) Returns a list of those elements for which the function is true

reduce(func, seq[, initial]) Equivalent to func(func(func(seq[0], seq[1]), seq[2]), ...)

sum(seq) Returns the sum of all the elements of seq

apply(func[, args[, kwargs]]) Calls the function, optionally supplying argument

What Now?
The next chapter takes abstractions to another level, through object-oriented programming. You learn how
to make your own types (or classes) of objects to use alongside those provided by Python (such as strings,
lists, and dictionaries), and you learn how this enables you to write better programs. Once you’ve worked
your way through the next chapter, you’ll be able to write some really big programs without getting lost in the
source code.

129© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_7

CHAPTER 7

More Abstraction

In the previous chapters, you looked at Python’s main built-in object types (numbers, strings, lists, tuples,
and dictionaries); you peeked at the wealth of built-in functions and standard libraries; and you even
created your own functions. Now, only one thing seems to be missing—making your own objects. And that’s
what you do in this chapter.

You may wonder how useful this is. It might be cool to make your own kinds of objects, but what would
you use them for? With all the dictionaries and sequences and numbers and strings available, can’t you
just use them and make the functions do the job? Certainly, but making your own objects (and especially
types or classes of objects) is a central concept in Python—so central, in fact, that Python is called an object-
oriented language (along with Smalltalk, C++, Java, and many others). In this chapter, you learn how to
make objects. You learn about polymorphism and encapsulation, methods and attributes, superclasses, and
inheritance—you learn a lot. So let’s get started.

■■ Note  If you’re already familiar with the concepts of object-oriented programming, you probably know
about constructors. Constructors will not be dealt with in this chapter; for a full discussion, see Chapter 9.

The Magic of Objects
In object-oriented programming, the term object loosely means a collection of data (attributes) with a set
of methods for accessing and manipulating those data. There are several reasons for using objects instead
of sticking with global variables and functions. Some of the most important benefits of objects include the
following:

•	 Polymorphism: You can use the same operations on objects of different classes, and
they will work as if “by magic.”

•	 Encapsulation: You hide unimportant details of how objects work from the outside
world.

•	 Inheritance: You can create specialized classes of objects from general ones.

In many presentations of object-oriented programming, the order of these concepts is different.
Encapsulation and inheritance are presented first, and then they are used to model real-world objects.
That’s all fine and dandy, but in my opinion, the most interesting feature of object-oriented programming
is polymorphism. It is also the feature that confuses most people (in my experience). Therefore, I start with
polymorphism and try to show that this concept alone should be enough to make you like object-oriented
programming.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 7 ■ More Abstraction

130

Polymorphism
The term polymorphism is derived from a Greek word meaning “having multiple forms.” Basically, that
means that even if you don’t know what kind of object a variable refers to, you may still be able to perform
operations on it that will work differently depending on the type (or class) of the object. For example, assume
that you are creating an online payment system for a commercial web site that sells food. Your program
receives a “shopping cart” of goods from another part of the system (or other similar systems that may be
designed in the future)—all you need to worry about is summing up the total and billing some credit card.

Your first thought may be to specify exactly how the goods must be represented when your program
receives them. For example, you may want to receive them as tuples, like this:

('SPAM', 2.50)

If all you need is a descriptive tag and a price, this is fine. But it’s not very flexible. Let’s say that some clever
person starts an auctioning service as part of the web site—where the price of an item is gradually reduced
until someone buys it. It would be nice if the user could put the object in her shopping cart, proceed to the
checkout (your part of the system), and just wait until the price was right before clicking the Pay button.

But that wouldn’t work with the simple tuple scheme. For that to work, the object would need to check
its current price (through some network magic) each time your code asked for the price—it couldn’t be
frozen like in a tuple. You can solve that by making a function.

Don't do it like this ...
def get_price(object):
 if isinstance(object, tuple):
 return object[1]
 else:
 return magic_network_method(object)

■■ Note  The type/class checking and use of isinstance here are meant to illustrate a point—namely, that
type checking isn’t generally a satisfactory solution. Avoid type checking if you possibly can. The function
isinstance is described in the section “Investigating Inheritance” later in this chapter.

In the preceding code, I use the function isinstance to find out whether the object is a tuple. If it is, its
second element is returned; otherwise, some “magic” network method is called.

Assuming that the network stuff already exists, you’ve solved the problem—for now. But this still isn’t
very flexible. What if some clever programmer decides that she’ll represent the price as a string with a hex
value, stored in a dictionary under the key 'price'? No problem—you just update your function.

Don't do it like this ...
def get_price(object):
 if isinstance(object, tuple):
 return object[1]
 elif isinstance(object, dict):
 return int(object['price'])
 else:
 return magic_network_method(object)

Chapter 7 ■ More Abstraction

131

Now, surely you must have covered every possibility? But let’s say someone decides to add a new type of
dictionary with the price stored under a different key. What do you do now? You could certainly update
get_price again, but for how long could you continue doing that? Every time someone wanted to
implement some priced object differently, you would need to reimplement your module. But what if you
already sold your module and moved on to other, cooler projects—what would the client do then? Clearly,
this is an inflexible and impractical way of coding the different behaviors.

So what do you do instead? You let the objects handle the operation themselves. It sounds really
obvious, but think about how much easier things will get. Every new object type can retrieve or calculate its
own price and return it to you—all you have to do is ask for it. And this is where polymorphism (and, to some
extent, encapsulation) enters the scene.

Polymorphism and Methods
You receive an object and have no idea of how it is implemented—it may have any one of many “shapes.” All
you know is that you can ask for its price, and that’s enough for you. The way you do that should be familiar.

>>> object.get_price()
2.5

Functions that are bound to object attributes like this are called methods. You already encountered them in
the form of string, list, and dictionary methods. There, too, you saw some polymorphism.

>>> 'abc'.count('a')
1
>>> [1, 2, 'a'].count('a')
1

If you had a variable x, you wouldn’t need to know whether it was a string or a list to call the count method—
it would work regardless (as long as you supplied a single character as the argument).

Let’s do an experiment. The standard library module random contains a function called choice that
selects a random element from a sequence. Let’s use that to give your variable a value.

>>> from random import choice
>>> x = choice(['Hello, world!', [1, 2, 'e', 'e', 4]])

After performing this, x can contain either the string 'Hello, world!' or the list [1, 2, 'e', 'e', 4]—
you don’t know, and you don’t have to worry about it. All you care about is how many times you find 'e' in
x, and you can find that out regardless of whether x is a list or a string. By calling the count method as before,
you find out just that.

>>> x.count('e')
2

In this case, it seems that the list won out. But the point is that you didn’t need to check. Your only
requirement was that x has a method called count that takes a single character as an argument and returned
an integer. If someone else had made his own class of objects that had this method, it wouldn’t matter to
you—you could use his objects just as well as the strings and lists.

Chapter 7 ■ More Abstraction

132

Polymorphism Comes in Many Forms
Polymorphism is at work every time you can “do something” to an object without having to know exactly
what kind of object it is. This doesn’t apply only to methods—we’ve already used polymorphism a lot in the
form of built-in operators and functions. Consider the following:

>>> 1 + 2
3
>>> 'Fish' + 'license'
'Fishlicense'

Here, the plus operator (+) works fine for both numbers (integers in this case) and strings (as well as other
types of sequences). To illustrate the point, let’s say you wanted to make a function called add that added two
things together. You could simply define it like this (equivalent to, but less efficient than, the add function
from the operator module):

def add(x, y):
 return x + y

This would also work with many kinds of arguments.

>>> add(1, 2)
3
>>> add('Fish', 'license')
'Fishlicense'

This might seem silly, but the point is that the arguments can be anything that supports addition.1 If you
want to write a function that prints a message about the length of an object, all that’s required is that it has a
length (that the len function will work on it).

def length_message(x):
 print("The length of", repr(x), "is", len(x))

As you can see, the function also uses repr, but repr is one of the grand masters of polymorphism—it works
with anything. Let’s see how:

>>> length_message('Fnord')
The length of 'Fnord' is 5
>>> length_message([1, 2, 3])
The length of [1, 2, 3] is 3

Many functions and operators are polymorphic—probably most of yours will be, too, even if you don’t
intend them to be. Just by using polymorphic functions and operators, the polymorphism “rubs off.” In
fact, virtually the only thing you can do to destroy this polymorphism is to do explicit type checking with
functions such as type or issubclass. If you can, you really should avoid destroying polymorphism this way.
What matters should be that an object acts the way you want, not whether it is of the right type (or class). The
injunction against type checking is not as absolute as it once was, however. With the introduction of abstract
base classes and the abc module, discussed later in this chapter, the issubclass function itself has become
polymorphic!

1Note that these objects need to support addition with each other. So calling add(1, 'license') would not work.

Chapter 7 ■ More Abstraction

133

■■ Note  The form of polymorphism discussed here, which is so central to the Python way of programming,
is sometimes called duck typing. The term derives from the phrase “If it quacks like a duck …” For more
information, see http://en.wikipedia.org/wiki/Duck_typing.

Encapsulation
Encapsulation is the principle of hiding unnecessary details from the rest of the world. This may sound
like polymorphism—there, too, you use an object without knowing its inner details. The two concepts are
similar because they are both principles of abstraction. They both help you deal with the components of your
program without caring about unnecessary detail, just as functions do.

But encapsulation isn’t the same as polymorphism. Polymorphism enables you to call the methods
of an object without knowing its class (type of object). Encapsulation enables you to use the object
without worrying about how it’s constructed. Does it still sound similar? Let’s construct an example with
polymorphism but without encapsulation. Assume that you have a class called OpenObject (you learn how
to create classes later in this chapter).

>>> o = OpenObject() # This is how we create objects...
>>> o.set_name('Sir Lancelot')
>>> o.get_name()
'Sir Lancelot'

You create an object (by calling the class as if it were a function) and bind the variable o to it. You can then
use the methods set_name and get_name (assuming that they are methods that are supported by the class
OpenObject). Everything seems to be working perfectly. However, let’s assume that o stores its name in the
global variable global_name.

>>> global_name
'Sir Lancelot'

This means that you need to worry about the contents of global_name when you use instances (objects) of
the class OpenObject. In fact, you must make sure that no one changes it.

>>> global_name = 'Sir Gumby'
>>> o.get_name()
'Sir Gumby'

Things get even more problematic if you try to create more than one OpenObject because they will all be
messing with the same variable.

>>> o1 = OpenObject()
>>> o2 = OpenObject()
>>> o1.set_name('Robin Hood')
>>> o2.get_name()
'Robin Hood'

As you can see, setting the name of one automatically sets the name of the other—not exactly what you want.

http://en.wikipedia.org/wiki/Duck_typing

Chapter 7 ■ More Abstraction

134

Basically, you want to treat objects as abstract. When you call a method, you don’t want to worry about
anything else, such as not disturbing global variables. So how can you “encapsulate” the name within the
object? No problem. You make it an attribute.

Attributes are variables that are a part of the object, just like methods; actually, methods are almost like
attributes bound to functions. (You’ll see an important difference between methods and functions in the
section “Attributes, Functions, and Methods” later in this chapter.) If you rewrite the class to use an attribute
instead of a global variable and you rename it ClosedObject, it works like this:

>>> c = ClosedObject()
>>> c.set_name('Sir Lancelot')
>>> c.get_name()
'Sir Lancelot'

So far, so good. But for all you know, this could still be stored in a global variable. Let’s make another object.

>>> r = ClosedObject()
>>> r.set_name('Sir Robin')
r.get_name()
'Sir Robin'

Here, you can see that the new object has its name set properly, which is probably what you expected. But
what has happened to the first object now?

>>> c.get_name()
'Sir Lancelot'

The name is still there! This is because the object has its own state. The state of an object is described by
its attributes (like its name, for example). The methods of an object may change these attributes. So it’s
like lumping together a bunch of functions (the methods) and giving them access to some variables (the
attributes) where they can keep values stored between function calls.

You’ll see even more details on Python’s encapsulation mechanisms in the section “Privacy Revisited”
later in the chapter.

Inheritance
Inheritance is another way of dealing with laziness (in the positive sense). Programmers want to avoid typing
the same code more than once. We avoided that earlier by making functions, but now I will address a subtler
problem. What if you have a class already and you want to make one that is very similar? Perhaps one that
adds only a few methods? When making this new class, you don’t want to need to copy all the code from the
old one over to the new one.

For example, you may already have a class called Shape, which knows how to draw itself on the screen.
Now you want to make a class called Rectangle, which also knows how to draw itself on the screen but
which can, in addition, calculate its own area. You wouldn’t want to do all the work of making a new draw
method when Shape has one that works just fine. So what do you do? You let Rectangle inherit the methods
from Shape. You can do this in such a way that when draw is called on a Rectangle object, the method from
the Shape class is called automatically (see the section “Specifying a Superclass” later in this chapter).

Chapter 7 ■ More Abstraction

135

Classes
By now, you’re getting a feeling for what classes are—or you may be getting impatient for me to tell you how
to make the darn things. Before jumping into the technicalities, let’s take a look at what a class is.

What Is a Class, Exactly?
I’ve been throwing around the word class a lot, using it more or less synonymously with words such as kind
or type. In many ways that’s exactly what a class is—a kind of object. All objects belong to a class and are said
to be instances of that class.

So, for example, if you look outside your window and see a bird, that bird is an instance of the class
“birds.” This is a very general (abstract) class that has several subclasses; your bird might belong to the
subclass “larks.” You can think of the class “birds” as the set of all birds, while the class “larks” is just a subset
of that. When the objects belonging to one class form a subset of the objects belonging to another class, the
first is called a subclass of the second. Thus, “larks” is a subclass of “birds.” Conversely, “birds” is a superclass
of “larks.”

■■ Note  In everyday speech, we denote classes of objects with plural nouns such as “birds” and “larks.” In
Python, it is customary to use singular, capitalized nouns such as Bird and Lark.

When stated like this, subclasses and superclasses are easy to understand. But in object-oriented
programming, the subclass relation has important implications because a class is defined by what methods
it supports. All the instances of a class have these methods, so all the instances of all subclasses must also
have them. Defining subclasses is then only a matter of defining more methods (or, perhaps, overriding some
of the existing ones).

For example, Bird might supply the method fly, while Penguin (a subclass of Bird) might add the
method eat_fish. When making a Penguin class, you would probably also want to override a method of the
superclass, namely, the fly method. In a Penguin instance, this method should either do nothing or possibly
raise an exception (see Chapter 8), given that penguins can’t fly.

■■ Note  In older versions of Python, there was a sharp distinction between types and classes. Built-in objects
had types; your custom objects had classes. You could create classes but not types. In recent versions of Python
2, this difference is much less pronounced, and in Python 3, the distinction has been dropped.

Making Your Own Classes
Finally, you get to make your own classes! Here is a simple example:

__metaclass__ = type # Include this if you’re using Python 2

class Person:

 def set_name(self, name):
 self.name = name

http://dx.doi.org/10.1007/978-1-4842-0028-5_8

Chapter 7 ■ More Abstraction

136

 def get_name(self):
 return self.name

 def greet(self):
 print("Hello, world! I'm {}.".format(self.name))

■■ Note  There is a difference between so-called old-style and new-style classes. There is really no reason
to use the old-style classes anymore, except that they’re what you get by default prior to Python 3. To get new-
style classes in older Pythons, you should place the assignment __metaclass__ = type at the beginning of
your script or module. I will not explicitly include this statement in every example. There are also other solutions,
such as subclassing a new-style class (for example, object). You learn more about subclassing in a minute. If
you’re using Python 3, there is no need to worry about this, as old-style classes don’t exist there. You find more
information about this in Chapter 9.

This example contains three method definitions, which are like function definitions except that they
are written inside a class statement. Person is, of course, the name of the class. The class statement creates
its own namespace where the functions are defined. (See the section “The Class Namespace” later in this
chapter.) All this seems fine, but you may wonder what this self parameter is. It refers to the object itself.
And what object is that? Let’s make a couple of instances and see.

>>> foo = Person()
>>> bar = Person()
>>> foo.set_name('Luke Skywalker')
>>> bar.set_name('Anakin Skywalker')
>>> foo.greet()
Hello, world! I'm Luke Skywalker.
>>> bar.greet()
Hello, world! I'm Anakin Skywalker.

Okay, so this example may be a bit obvious, but perhaps it clarifies what self is. When I call set_name and
greet on foo, foo itself is automatically passed as the first parameter in each case—the parameter that I have
so fittingly called self. You may, in fact, call it whatever you like, but because it is always the object itself, it is
almost always called self, by convention.

It should be obvious why self is useful, and even necessary, here. Without it, none of the methods
would have access to the object itself—the object whose attributes they are supposed to manipulate. As
before, the attributes are also accessible from the outside.

>>> foo.name
'Luke Skywalker'
>>> bar.name = 'Yoda'
>>> bar.greet()
Hello, world! I'm Yoda.

■■ Tip  Another way of viewing this is that foo.greet() is simply a convenient way of writing the less
polymorphic Person.greet(foo), if you happen know that foo is an instance of Person.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 7 ■ More Abstraction

137

Attributes, Functions, and Methods
The self parameter (mentioned in the previous section) is, in fact, what distinguishes methods from
functions. Methods (or, more technically, bound methods) have their first parameter bound to the instance
they belong to, so you don’t have to supply it. While you can certainly bind an attribute to a plain function, it
won’t have that special self parameter.

>>> class Class:
... def method(self):
... print('I have a self!')
...
>>> def function():
... print("I don't...")
...
>>> instance = Class()
>>> instance.method() I have a self!
>>> instance.method = function
>>> instance.method() I don't...

Note that the self parameter is not dependent on calling the method the way I’ve done until now, as
instance.method. You’re free to use another variable that refers to the same method.

>>> class Bird:
... song = 'Squaawk!'
... def sing(self):
... print(self.song)
...
>>> bird = Bird()
>>> bird.sing()
Squaawk!
>>> birdsong = bird.sing
>>> birdsong()
Squaawk!

Even though the last method call looks exactly like a function call, the variable birdsong refers to the bound
method bird.sing, which means that it still has access to the self parameter (that is, it is still bound to the
same instance of the class).

Privacy Revisited
By default, you can access the attributes of an object from the “outside.” Let’s revisit the example from the
earlier discussion on encapsulation.

>>> c.name
'Sir Lancelot'
>>> c.name = 'Sir Gumby'
>>> c.get_name()
'Sir Gumby'

Chapter 7 ■ More Abstraction

138

Some programmers are okay with this, but some (like the creators of Smalltalk, a language where attributes
of an object are accessible only to the methods of the same object) feel that it breaks with the principle of
encapsulation. They believe that the state of the object should be completely hidden (inaccessible) to the
outside world. You might wonder why they take such an extreme stand. Isn’t it enough that each object
manages its own attributes? Why should you hide them from the world? After all, if you just used the name
attribute directly on ClosedObject (the class of c in this case), you wouldn’t need to make the setName and
getName methods.

The point is that other programmers may not know (and perhaps shouldn’t know) what’s going on
inside your object. For example, ClosedObject may send an e-mail message to some administrator every
time an object changes its name. This could be part of the set_name method. But what happens when you
set c.name directly? Nothing happens—no e-mail message is sent. To avoid this sort of thing, you have
private attributes. These are attributes that are not accessible outside the object; they are accessible only
through accessor methods, such as get_name and set_name.

■■ Note  In Chapter 9, you learn about properties, a powerful alternative to accessors.

Python doesn’t support privacy directly but relies on the programmer to know when it is safe to modify an
attribute from the outside. After all, you should know how to use an object before using that object. It is,
however, possible to achieve something like private attributes with a little trickery.

To make a method or attribute private (inaccessible from the outside), simply start its name with two
underscores.

class Secretive:

 def __inaccessible(self):
 print("Bet you can't see me ...")

 def accessible(self):
 print("The secret message is:")
 self.__inaccessible()

Now inaccessible is inaccessible to the outside world, while it can still be used inside the class (for
example, from accessible).

>>> s = Secretive()
>>> s.__inaccessible()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: Secretive instance has no attribute '__inaccessible'
>>> s.accessible()
The secret message is:
Bet you can't see me ...

Although the double underscores are a bit strange, this seems like a standard private method, as found
in other languages. What’s not so standard is what actually happens. Inside a class definition, all names
beginning with a double underscore are “translated” by adding a single underscore and the class name to
the beginning.

>>> Secretive._Secretive__inaccessible
<unbound method Secretive.__inaccessible>

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 7 ■ More Abstraction

139

If you know how this works behind the scenes, it is still possible to access private methods outside the class,
even though you’re not supposed to.

>>> s._Secretive__inaccessible()
Bet you can't see me ...

So, in short, you can’t be sure that others won’t access the methods and attributes of your objects, but this
sort of name-mangling is a pretty strong signal that they shouldn’t.

If you don’t want the name-mangling effect but you still want to send a signal for other objects to stay
away, you can use a single initial underscore. This is mostly just a convention but has some practical effects.
For example, names with an initial underscore aren’t imported with starred imports (from module import *).2

The Class Namespace
The following two statements are (more or less) equivalent:

def foo(x): return x * x
foo = lambda x: x * x

Both create a function that returns the square of its argument, and both bind the variable foo to that
function. The name foo may be defined in the global (module) scope, or it may be local to some function or
method. The same thing happens when you define a class: all the code in the class statement is executed in
a special namespace—the class namespace. This namespace is accessible later by all members of the class.
Not all Python programmers know that class definitions are simply code sections that are executed, but it
can be useful information. For example, you aren’t restricted to def statements inside the class definition
block.

>>> class C:
... print('Class C being defined...')
...
Class C being defined...
>>>

Okay, that was a bit silly. But consider the following:

class MemberCounter:
 members = 0
 def init(self):
 MemberCounter.members += 1

>>> m1 = MemberCounter()
>>> m1.init()
>>> MemberCounter.members
1
>>> m2 = MemberCounter()
>>> m2.init()
>>> MemberCounter.members
2

2Some languages support several degrees of privacy for its member variables (attributes). Java, for example, has four
different levels. Python doesn’t really have equivalent privacy support, although single and double initial underscores do
to some extent give you two levels of privacy.

Chapter 7 ■ More Abstraction

140

In the preceding code, a variable is defined in the class scope, which can be accessed by all the members
(instances), in this case to count the number of class members. Note the use of init to initialize all the
instances: I’ll automate that (that is, turn it into a proper constructor) in Chapter 9.

This class scope variable is accessible from every instance as well, just as methods are.

>>> m1.members
2
>>> m2.members
2

What happens when you rebind the members attribute in an instance?

>>> m1.members = 'Two'
>>> m1.members
'Two'
>>> m2.members
2

The new members value has been written into an attribute in m1, shadowing the class-wide variable. This
mirrors the behavior of local and global variables in functions, as discussed in the sidebar “The Problem of
Shadowing” in Chapter 6.

Specifying a Superclass
As I discussed earlier in the chapter, subclasses expand on the definitions in their superclasses. You indicate
the superclass in a class statement by writing it in parentheses after the class name.

class Filter:
 def init(self):
 self.blocked = []
 def filter(self, sequence):
 return [x for x in sequence if x not in self.blocked]

class SPAMFilter(Filter): # SPAMFilter is a subclass of Filter
 def init(self): # Overrides init method from Filter superclass
 self.blocked = ['SPAM']

Filter is a general class for filtering sequences. Actually it doesn’t filter out anything.

>>> f = Filter()
>>> f.init()
>>> f.filter([1, 2, 3])
[1, 2, 3]

The usefulness of the Filter class is that it can be used as a base class (superclass) for other classes, such as
SPAMFilter, which filters out 'SPAM' from sequences.

>>> s = SPAMFilter()
>>> s.init()
>>> s.filter(['SPAM', 'SPAM', 'SPAM', 'SPAM', 'eggs', 'bacon', 'SPAM'])
['eggs', 'bacon']

http://dx.doi.org/10.1007/978-1-4842-0028-5_9
http://dx.doi.org/10.1007/978-1-4842-0028-5_6

Chapter 7 ■ More Abstraction

141

Note these two important points in the definition of SPAMFilter:

•	 I override the definition of init from Filter by simply providing a new definition.

•	 The definition of the filter method carries over (is inherited) from Filter, so you
don’t need to write the definition again.

The second point demonstrates why inheritance is useful: I can now make a number of different filter
classes, all subclassing Filter, and for each one I can simply use the filter method I have already
implemented. Talk about useful laziness . . .

Investigating Inheritance
If you want to find out whether a class is a subclass of another, you can use the built-in method issubclass.

>>> issubclass(SPAMFilter, Filter)
True
>>> issubclass(Filter, SPAMFilter)
False

If you have a class and want to know its base classes, you can access its special attribute bases.

>>> SPAMFilter.__bases__
(<class __main__.Filter at 0x171e40>,)
>>> Filter.__bases__
(<class 'object'>,)

In a similar manner, you can check whether an object is an instance of a class by using isinstance.

>>> s = SPAMFilter()
>>> isinstance(s, SPAMFilter)
True
>>> isinstance(s, Filter)
True
>>> isinstance(s, str)
False

■■ Note  Using isinstance is usually not good practice. Relying on polymorphism is almost always better.
The main exception is when you use abstract base classes and the abc module.

As you can see, s is a (direct) member of the class SPAMFilter, but it is also an indirect member of Filter
because SPAMFilter is a subclass of Filter. Another way of putting it is that all SPAMFilters are Filters.
As you can see in the preceding example, isinstance also works with types, such as the string type (str).

If you just want to find out which class an object belongs to, you can use the __class__ attribute.

>>> s.__class__
<class __main__.SPAMFilter at 0x1707c0>

Chapter 7 ■ More Abstraction

142

■■ Note  If you have a new-style class, either by setting __metaclass__ = type or by subclassing object,
you could also use type(s) to find the class of your instance. For old-style classes, type simply returns the
instance type, regardless of which class an object is an instance of.

Multiple Superclasses
I’m sure you noticed a small detail in the previous section that may have seemed odd: the plural form in
bases. I said you could use it to find the base classes of a class, which implies that it may have more than
one. This is, in fact, the case. To show how it works, let’s create a few classes.

class Calculator:
 def calculate(self, expression):
 self.value = eval(expression)

class Talker:
 def talk(self):
 print('Hi, my value is', self.value)

class TalkingCalculator(Calculator, Talker):
 pass

The subclass (TalkingCalculator) does nothing by itself; it inherits all its behavior from its superclasses.
The point is that it inherits both calculate from Calculator and talk from Talker, making it a talking
calculator.

>>> tc = TalkingCalculator()
>>> tc.calculate('1 + 2 * 3')
>>> tc.talk()
Hi, my value is 7

This is called multiple inheritance, and it can be a very powerful tool. However, unless you know you
need multiple inheritance, you may want to stay away from it, as it can, in some cases, lead to unforeseen
complications.

If you are using multiple inheritance, there is one thing you should look out for: if a method is
implemented differently by two or more of the superclasses (that is, you have two different methods with
the same name), you must be careful about the order of these superclasses (in the class statement). The
methods in the earlier classes override the methods in the later ones. So if the Calculator class in the
preceding example had a method called talk, it would override (and make inaccessible) the talk method of
the Talker. Reversing their order, like this:

class TalkingCalculator(Talker, Calculator): pass

would make the talk method of the Talker accessible. If the superclasses share a common superclass, the
order in which the superclasses are visited while looking for a given attribute or method is called the method
resolution order (MRO) and follows a rather complicated algorithm. Luckily, it works very well, so you
probably don’t need to worry about it.

Chapter 7 ■ More Abstraction

143

Interfaces and Introspection
The “interface” concept is related to polymorphism. When you handle a polymorphic object, you only care
about its interface (or “protocol”)—the methods and attributes known to the world. In Python, you don’t
explicitly specify which methods an object needs to have to be acceptable as a parameter. For example, you
don’t write interfaces explicitly (as you do in Java); you just assume that an object can do what you ask it to
do. If it can’t, the program will fail.

Usually, you simply require that objects conform to a certain interface (in other words, implement
certain methods), but if you want to, you can be quite flexible in your demands. Instead of just calling the
methods and hoping for the best, you can check whether the required methods are present, and if not,
perhaps do something else.

>>> hasattr(tc, 'talk')
True
>>> hasattr(tc, 'fnord')
False

In the preceding code, you find that tc (a TalkingCalculator, as described earlier in this chapter) has the
attribute talk (which refers to a method) but not the attribute fnord. If you wanted to, you could even check
whether the talk attribute was callable.

>>> callable(getattr(tc, 'talk', None))
True
>>> callable(getattr(tc, 'fnord', None))
False

Note that instead of using hasattr in an if statement and accessing the attribute directly, I’m using getattr,
which allows me to supply a default value (in this case None) that will be used if the attribute is not present. I
then use callable on the returned object.

■■ Note  The inverse of getattr is setattr, which can be used to set the attributes of an object:

>>> setattr(tc, 'name', 'Mr. Gumby')
>>> tc.name
'Mr. Gumby'

If you want to see all the values stored in an object, you can examine its __dict__ attribute. And if you
really want to find out what an object is made of, you should take a look at the inspect module. It is meant
for fairly advanced users who want to make object browsers (programs that enable you to browse Python
objects in a graphical manner) and other similar programs that require such functionality. For more
information on exploring objects and modules, see the section “Exploring Modules” in Chapter 10.

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 7 ■ More Abstraction

144

Abstract Base Classes
You can do better than manually checking for individual methods, however. For much of its history, Python
relied almost exclusively on duck typing and just assuming that whatever object you had could do its job,
perhaps with some checking using hasattr to look for the presence of certain required methods. The idea of
explicitly specified interfaces, as found in many other languages, such as Java and Go, with some third-party
modules providing various implementations. Eventually, though, the official Python solution came with the
introduction of the abc module. This module provides support for so-called abstract base classes. In general,
an abstract class is simply one that can’t, or at least shouldn’t, be instantiated. Its job is to provide a set of
abstract methods that subclasses should implement. Here’s a simple example:

from abc import ABC, abstractmethod

class Talker(ABC):
 @abstractmethod
 def talk(self):
 pass

The use of so-called decorators that look like @this is described in more detail in Chapter 9. The important
thing here is that you use @abstractmethod to mark a method as abstract—a method that must be
implemented in a subclass.

■■ Note  If you’re using older versions of Python, you won’t find the ABC class in the abc module. You then
need to import ABCMeta instead and place the (indented) line __metaclass__ = ABCMeta at the beginning of
the class definition, just below the class statement line. If you’re using Python 3 prior to 3.4, you can also use
Talker(metaclass=ABCMeta) instead of Talker(ABC).

The most basic property of an abstract class (that is, one with abstract methods) is that it has no instances.

>>> Talker()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Talker with abstract methods talk

Let’s say we subclass it as follows:

class Knigget(Talker):
 pass

We haven’t overridden the talk method, so this class is also abstract and cannot be instantiated. If you
try, you get a similar error message to the previous one. We can rewrite it, however, to implement the
required methods.

class Knigget(Talker):
 def talk(self):
 print("Ni!")

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

Chapter 7 ■ More Abstraction

145

Now, instantiating it will work just fine. And this is one of the main uses of abstract base classes—and
perhaps the only proper use of isinstance in Python: if we first check that a given instance is indeed a
Talker, we can be confident that when we need it, the instance will have the talk method.

>>> k = Knigget()
>>> isinstance(k, Talker)
True
>>> k.talk()
Ni!

We’re still missing an important part of the picture, though—the part that, as I hinted at earlier, makes
isinstance more polymorphic. You see, the abstract base class mechanism lets us use this kind of instance
checking in the spirit of duck typing! We don’t care what you are—only what you can do (that is, which
methods you implement). So if you implement the talk method but aren’t a subclass of Talker, you should
still pass our type checking. So let’s whip up another class.

class Herring:
 def talk(self):
 print("Blub.")

This should pass just fine as a talker—and yet, it isn’t a Talker.

>>> h = Herring()
>>> isinstance(h, Talker)
False

Sure, you could simply subclass Talker and be done with it, but you might be importing Herring from
someone else’s module, in which case that’s not an option. Rather than, say, creating a subclass of both
Herring and Talker, you can simply register Herring as a Talker, after which all herrings are properly
recognized as talkers.

>>> Talker.register(Herring)
<class '__main__.Herring'>
>>> isinstance(h, Talker)
True
>>> issubclass(Herring, Talker)
True

There is a potential weakness here, though, that undermines the guarantees we saw when directly
subclassing an abstract class.

>>> class Clam:
... pass
...
>>> Talker.register(Clam)
<class '__main__.Clam'>
>>> issubclass(Clam, Talker)
True
>>> c = Clam()
>>> isinstance(c, Talker)
True

Chapter 7 ■ More Abstraction

146

>>> c.talk()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Clam' object has no attribute 'talk'

In other words, the fact that isinstance returns True should be taken as an expression of intent. In this
case, Clam is intended to be a Talker. In the spirit of duck typing, we trust it to do its job—which, sadly, it
fails to do.

The standard library provides several useful abstract base classes, for example in the collections.abc
module. For more details on the abc module, see the Python standard library reference.

Some Thoughts on Object-Oriented Design
Many books have been written about object-oriented program design, and although that’s not the focus of
this book, I’ll give you some pointers:

•	 Gather what belongs together. If a function manipulates a global variable, the two of
them might be better off in a class, as an attribute and a method.

•	 Don’t let objects become too intimate. Methods should mainly be concerned with
the attributes of their own instance. Let other instances manage their own state.

•	 Go easy on the inheritance, especially multiple inheritance. Inheritance is useful
at times but can make things unnecessarily complex in some cases. And multiple
inheritance can be very difficult to get right and even harder to debug.

•	 Keep it simple. Keep your methods small. As a rule of thumb, it should be possible to
read (and understand) most of your methods in, say, 30 seconds. For the rest, try to
keep them shorter than one page or screen.

When determining which classes you need and which methods they should have, you may try something
like this:

	 1.	 Write down a description of your problem (what should the program do?).
Underline all the nouns, verbs, and adjectives.

	 2.	 Go through the nouns, looking for potential classes.

	 3.	 Go through the verbs, looking for potential methods.

	 4.	 Go through the adjectives, looking for potential attributes.

	 5.	 Allocate methods and attributes to your classes.

Now you have a first sketch of an object-oriented model. You may also want to think about what
responsibilities and relationships (such as inheritance or cooperation) the classes and objects will have. To
refine your model, you can do the following:

	 1.	 Write down (or dream up) a set of use cases—scenarios of how your program may
be used. Try to cover all the functionality.

	 2.	 Think through every use case step by step, making sure that everything you need
is covered by your model. If something is missing, add it. If something isn’t quite
right, change it. Continue until you are satisfied.

Chapter 7 ■ More Abstraction

147

When you have a model you think will work, you can start hacking away. Chances are you’ll need to revise
your model or revise parts of your program. Luckily, that’s easy in Python, so don’t worry about it. Just dive
in. (If you would like some more guidance in the ways of object-oriented programming, check out the list of
suggested books in Chapter 19.)

A Quick Summary
This chapter gave you more than just information about the Python language; it has introduced you to
several concepts that may have been completely foreign to you. Here’s a summary:

Objects: An object consists of attributes and methods. An attribute is merely a
variable that is part of an object, and a method is more or less a function that
is stored in an attribute. One difference between (bound) methods and other
functions is that methods always receive the object they are part of as their first
argument, usually called self.

Classes: A class represents a set (or kind) of objects, and every object (instance)
has a class. The class’s main task is to define the methods its instances will have.

Polymorphism: Polymorphism is the characteristic of being able to treat objects
of different types and classes alike—you don’t need to know which class an
object belongs to in order to call one of its methods.

Encapsulation: Objects may hide (or encapsulate) their internal state. In some
languages, this means that their state (their attributes) is available only through
their methods. In Python, all attributes are publicly available, but programmers
should still be careful about accessing an object’s state directly, since they might
unwittingly make the state inconsistent in some way.

Inheritance: One class may be the subclass of one or more other classes. The
subclass then inherits all the methods of the superclasses. You can use more
than one superclass, and this feature can be used to compose orthogonal
(independent and unrelated) pieces of functionality. A common way of
implementing this is using a core superclass along with one or more mix-in
superclasses.

Interfaces and introspection: In general, you don’t want to prod an object too
deeply. You rely on polymorphism and call the methods you need. However,
if you want to find out what methods or attributes an object has, there are
functions that will do the job for you.

Abstract base classes: Using the abc module, you can create so-called abstract
base classes, which serve to identify the kind of functionality a class should
provide, without actually implementing it.

Object-oriented design: There are many opinions about how (or whether!) to do
object-oriented design. No matter where you stand on the issue, it’s important
to understand your problem thoroughly and to create a design that is easy to
understand.

http://dx.doi.org/10.1007/978-1-4842-0028-5_19

Chapter 7 ■ More Abstraction

148

New Functions in This Chapter

Function Description

callable(object) Determines if the object is callable (such as a function or a
method)

getattr(object, name[, default]) Gets the value of an attribute, optionally providing a default

hasattr(object, name) Determines if the object has the given attribute

isinstance(object, class) Determines if the object is an instance of the class

issubclass(A, B) Determines if A is a subclass of B

random.choice(sequence) Chooses a random element from a nonempty sequence

setattr(object, name, value) Sets the given attribute of the object to value

type(object) Returns the type of the object

What Now?
You’ve learned a lot about creating your own objects and how useful that can be. Before diving headlong into
the magic of Python’s special methods (Chapter 9), let’s take a breather with a little chapter about exception
handling.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

149© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_8

CHAPTER 8

Exceptions

When writing computer programs, it is usually possible to discern between a normal course of events and
something that’s exceptional (out of the ordinary). Such exceptional events might be errors (such as trying
to divide a number by zero) or simply something you might not expect to happen very often. To handle
such exceptional events, you might use conditionals everywhere the events might occur (for example, have
your program check whether the denominator is zero for every division). However, this would not only be
inefficient and inflexible but would also make the programs illegible. You might be tempted to ignore these
exceptional events and just hope they won’t occur, but Python offers an exception-handling mechanism as a
powerful alternative.

In this chapter, you’ll learn how to create and raise your own exceptions, as well as how to handle
exceptions in various ways.

What Is an Exception?
To represent exceptional conditions, Python uses exception objects. When it encounters an error, it raises an
exception. If such an exception object is not handled (or caught), the program terminates with a so-called
traceback (an error message).

>>> 1 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

If such error messages were all you could use exceptions for, they wouldn’t be very interesting. The fact
is, however, that each exception is an instance of some class (in this case ZeroDivisionError), and these
instances may be raised and caught in various ways, allowing you to trap the error and do something about it
instead of just letting the entire program fail.

Making Things Go Wrong . . . Your Way
As you’ve seen, exceptions are raised automatically when something is wrong. Before looking at how to deal
with those exceptions, let’s take a look at how you can raise exceptions yourself—and even create your own
kinds of exceptions.

Chapter 8 ■ Exceptions

150

The raise Statement
To raise an exception, you use the raise statement with an argument that is either a class (which should
subclass Exception) or an instance. When using a class, an instance is created automatically Here is an
example, using the built-in exception class Exception:

>>> raise Exception
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception
>>> raise Exception('hyperdrive overload')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
Exception: hyperdrive overload

The first example, raise Exception, raises a generic exception with no information about what went wrong.
In the previous example, I added the error message hyperdrive overload.

Many built-in classes are available. Table 8-1 describes some of the most important ones. You can find
a description of all of them in the Python Library Reference, in the section “Built-in Exceptions.” All of these
exception classes can be used in your raise statements.

>>> raise ArithmeticError
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ArithmeticError

Table 8-1.  Some Built-in Exceptions

Class Name Description

Exception The base class for almost all exceptions.

AttributeError Raised when attribute reference or assignment fails.

OSError Raised when the operating system can’t perform a task, such as a file, for
example. Has several specific subclasses.

IndexError Raised when using a nonexistent index on a sequence. Subclass of LookupError.

KeyError Raised when using a nonexistent key on a mapping. Subclass of LookupError.

NameError Raised when a name (variable) is not found.

SyntaxError Raised when the code is ill-formed.

TypeError Raised when a built-in operation or function is applied to an object of the wrong
type.

ValueError Raised when a built-in operation or function is applied to an object with the
correct type but with an inappropriate value.

ZeroDivisionError Raised when the second argument of a division or modulo operation is zero.

Chapter 8 ■ Exceptions

151

Custom Exception Classes
Although the built-in exceptions cover a lot of ground and are sufficient for many purposes, there are times
when you might want to create your own. For example, in the hyperdrive overload example, wouldn’t it
be more natural to have a specific HyperdriveError class representing error conditions in the hyperdrive?
It might seem that the error message is sufficient, but as you will see in the next section (“Catching
Exceptions”), you can selectively handle certain types of exceptions based on their class. Thus, if you wanted
to handle hyperdrive errors with special error-handling code, you would need a separate class for the
exceptions.

So, how do you create exception classes? Just like any other class—but be sure to subclass Exception
(either directly or indirectly, which means that subclassing any other built-in exception is okay). Thus,
writing a custom exception basically amounts to something like this:

class SomeCustomException(Exception): pass

It’s really not much work, is it? (If you want, you can certainly add methods to your exception class as well.)

Catching Exceptions
As mentioned earlier, the interesting thing about exceptions is that you can handle them (often called
trapping or catching the exceptions). You do this with the try/except statement. Let’s say you have created a
program that lets the user enter two numbers and then divides one by the other, like this:

x = int(input('Enter the first number: '))
y = int(input('Enter the second number: '))
print(x / y)

This would work nicely until the user enters zero as the second number.

Enter the first number: 10
Enter the second number: 0
Traceback (most recent call last):
 File "exceptions.py", line 3, in ?
 print(x / y)
ZeroDivisionError: integer division or modulo by zero

To catch the exception and perform some error handling (in this case simply printing a more user-friendly
error message), you could rewrite the program like this:

try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 print(x / y)
except ZeroDivisionError:
 print("The second number can't be zero!")

It might seem that a simple if statement checking the value of y would be easier to use, and in this case, it
might indeed be a better solution. But if you added more divisions to your program, you would need one if
statement per division; by using try/except, you need only one error handler.

Chapter 8 ■ Exceptions

152

■■ Note  Exceptions propagate out of functions to where they’re called, and if they’re not caught there either,
the exceptions will “bubble up” to the top level of the program. This means that you can use try/except to
catch exceptions that are raised in other people’s functions. For more details, see the section “Exceptions and
Functions” later in this chapter.

Look, Ma, No Arguments!
If you have caught an exception but you want to raise it again (pass it on, so to speak), you can call raise
without any arguments. (You can also supply the exception explicitly if you catch it, as explained in the
section “Catching the Object” later in this chapter.)

As an example of how this might be useful, consider a calculator class that has the capability to “muffle”
ZeroDivisionError exceptions. If this behavior is turned on, the calculator prints out an error message
instead of letting the exception propagate. This is useful if the calculator is used in an interactive session with
a user, but if it is used internally in a program, raising an exception would be better. Therefore, the muffling
can be turned off. Here is the code for such a class:

class MuffledCalculator:
 muffled = False
 def calc(self, expr):
 try:
 return eval(expr)
 except ZeroDivisionError:
 if self.muffled:
 print('Division by zero is illegal')
 else:
 raise

■■ Note  If division by zero occurs and muffling is turned on, the calc method will (implicitly) return None. In
other words, if you turn on muffling, you should not rely on the return value.

The following is an example of how this class may be used, both with and without muffling:

>>> calculator = MuffledCalculator()
>>> calculator.calc('10 / 2')
5.0
>>> calculator.calc('10 / 0') # No muffling
Traceback (most recent call last): File "<stdin>", line 1, in ?
 File "MuffledCalculator.py", line 6, in calc
 return eval(expr)
 File "<string>", line 0, in ?
ZeroDivisionError: integer division or modulo by zero
>>> calculator.muffled = True
>>> calculator.calc('10 / 0')
Division by zero is illegal

Chapter 8 ■ Exceptions

153

As you can see, when the calculator is not muffled, the ZeroDivisionError is caught but passed on.
Using raise with no arguments is often a good choice in an except clause, if you’re unable to handle

the exception. Sometimes you may want to raise a different exception, though. In that case, the exception
that took you into the except cause will be stored as the context for your exception and will be part of the
final error message, for example:

>>> try:
... 1/0
... except ZeroDivisionError:
... raise ValueError
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
ValueError

You can supply your own context exception by using the raise ... from ... version of the statement or
use None to suppress the context.

>>> try:
... 1/0
... except ZeroDivisionError:
... raise ValueError from None
...
Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
ValueError

More Than One except Clause
If you run the program from the previous section again and enter a nonnumeric value at the prompt,
another exception occurs.

Enter the first number: 10
Enter the second number: "Hello, world!"
Traceback (most recent call last):
 File "exceptions.py", line 4, in ?
 print(x / y)
TypeError: unsupported operand type(s) for /: 'int' and 'str'

Because the except clause looked for only ZeroDivisionError exceptions, this one slipped through and
halted the program. To catch this exception as well, you can simply add another except clause to the same
try/except statement.

Chapter 8 ■ Exceptions

154

try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 print(x / y)
except ZeroDivisionError:
 print("The second number can't be zero!")
except TypeError:
 print("That wasn't a number, was it?")

This time using an if statement would be more difficult. How do you check whether a value can be used in
division? There are a number of ways, but by far the best way is, in fact, to simply divide the values to see if it
works.

Also notice how the exception handling doesn’t clutter the original code. Adding a lot of if statements
to check for possible error conditions could easily have made the code quite unreadable.

Catching Two Exceptions with One Block
If you want to catch more than one exception type with one block, you can specify them all in a tuple, as
follows:

try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 print(x / y)
except (ZeroDivisionError, TypeError, NameError):
 print('Your numbers were bogus ...')

In the preceding code, if the user enters either a string or something other than a number or if the second
number is zero, the same error message is printed. Simply printing an error message isn’t very helpful, of
course. An alternative could be to keep asking for numbers until the division works. I show you how to do
that in the section “When All Is Well” later in this chapter.

Note that the parentheses around the exceptions in the except clause are important. A common error is
to omit these parentheses, in which case you may end up with something other than what you want. For an
explanation, see the next section, “Catching the Object.”

Catching the Object
If you want access to the exception object itself in an except clause, you can use two arguments instead of
one. (Note that even when you are catching multiple exceptions, you are supplying except with only one
argument—a tuple.) This can be useful (for example) if you want your program to keep running but you
want to log the error somehow (perhaps just printing it out to the user). The following is a sample program
that prints out the exception (if it occurs) but keeps running:

try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 print(x / y)
except (ZeroDivisionError, TypeError) as e:
 print(e)

Chapter 8 ■ Exceptions

155

The except clause in this little program again catches two types of exceptions, but because you also explicitly
catch the object itself, you can print it out so the user can see what happened. (You see a more useful
application of this later in this chapter, in the section “When All Is Well.”)

A Real Catchall
Even if the program handles several types of exceptions, some may still slip through. For example, using the
same division program, simply try to press Enter at the prompt, without writing anything. You should get an
error message and some information about what went wrong (a stack trace), somewhat like this:

Traceback (most recent call last):
 ...
ValueError: invalid literal for int() with base 10: ''

This exception got through the try/except statement—and rightly so. You hadn’t foreseen that this could
happen and weren’t prepared for it. In these cases, it is better that the program crash immediately (so you
can see what’s wrong) than that it simply hide the exception with a try/except statement that isn’t meant to
catch it.

However, if you do want to catch all exceptions in a piece of code, you can simply omit the exception
class from the except clause.

try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 print(x / y)
except:
 print('Something wrong happened ...')

Now you can do practically whatever you want.

Enter the first number: "This" is *completely* illegal 123
Something wrong happened ...

Catching all exceptions like this is risky business because it will hide errors you haven’t thought of as
well as those you’re prepared for. It will also trap attempts by the user to terminate execution by Ctrl-C,
attempts by functions you call to terminate by sys.exit, and so on. In most cases, it would be better to use
except Exception as e and perhaps do some checking on the exception object, e. This will then permit
those very few exceptions that don’t subclass Exception to slip through. This includes SystemExit and
KeyboardInterrupt, which subclass BaseException, the superclass of Exception itself.

When All Is Well
In some cases, it can be useful to have a block of code that is executed unless something bad happens; as
with conditionals and loops, you can add an else clause to the try/except statement.

try:
 print('A simple task')
except:
 print('What? Something went wrong?')
else:
 print('Ah ... It went as planned.')

Chapter 8 ■ Exceptions

156

If you run this, you get the following output:

A simple task
Ah ... It went as planned.

With this else clause, you can implement the loop hinted at in the section “Catching Two Exceptions with
One Block” earlier in this chapter.

while True:
 try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 value = x / y
 print('x / y is', value)
 except:
 print('Invalid input. Please try again.')
 else:
 break

Here, the loop is broken (by the break statement in the else clause) only when no exception is raised. In
other words, as long as something wrong happens, the program keeps asking for new input. The following is
an example run:

Enter the first number: 1
Enter the second number: 0
Invalid input. Please try again.
Enter the first number: 'foo'
Enter the second number: 'bar'
Invalid input. Please try again.
Enter the first number: baz
Invalid input. Please try again.
Enter the first number: 10
Enter the second number: 2
x / y is 5

As mentioned previously, a preferable alternative to using an empty except clause is to catch all exceptions
of the Exception class (which will catch all exceptions of any subclass as well). You cannot be 100 percent
certain that you’ll catch everything then, because the code in your try/except statement may be naughty
and use the old-fashioned string exceptions or perhaps create a custom exception that doesn’t subclass
Exception. However, if you go with the except Exception version, you can use the technique from the
section “Catching the Object” earlier in this chapter to print out a more instructive error message in your
little division program.

while True:
 try:
 x = int(input('Enter the first number: '))
 y = int(input('Enter the second number: '))
 value = x / y
 print('x / y is', value)

Chapter 8 ■ Exceptions

157

 except Exception as e:
 print('Invalid input:', e)
 print('Please try again')
 else:
 break

The following is a sample run:

Enter the first number: 1
Enter the second number: 0
Invalid input: integer division or modulo by zero
Please try again
Enter the first number: 'x' Enter the second number: 'y'
Invalid input: unsupported operand type(s) for /: 'str' and 'str'
Please try again
Enter the first number: quuux
Invalid input: name 'quuux' is not defined
Please try again
Enter the first number: 10
Enter the second number: 2
x / y is 5

And Finally . . .
Finally, there is the finally clause. You use it to do housekeeping after a possible exception. It is combined
with a try clause.

x = None
try:
 x = 1 / 0
finally:
 print('Cleaning up ...')
 del x

In the preceding example, you are guaranteed that the finally clause will be executed, no matter what
exceptions occur in the try clause. The reason for initializing x before the try clause is that otherwise it
would never be assigned a value because of the ZeroDivisionError. This would lead to an exception when
using del on it within the finally clause, which you wouldn’t catch.

If you run this, the cleanup comes before the program crashes and burns.

Cleaning up ...
Traceback (most recent call last):
 File "C:\python\div.py", line 4, in ?
 x = 1 / 0
ZeroDivisionError: integer division or modulo by zero

While using del to remove a variable is a rather silly kind of cleanup, the finally clause may be quite useful
for closing files or network sockets and the like. (You learn more about those in Chapter 14.)

http://dx.doi.org/10.1007/978-1-4842-0028-5_14

Chapter 8 ■ Exceptions

158

You can also combine try, except, finally, and else (or just three of them) in a single statement.

try:
 1 / 0
except NameError:
 print("Unknown variable")
else:
 print("That went well!")
finally:
 print("Cleaning up.")

Exceptions and Functions
Exceptions and functions work together quite naturally. If an exception is raised inside a function and isn’t
handled there, it propagates (bubbles up) to the place where the function was called. If it isn’t handled
there either, it continues propagating until it reaches the main program (the global scope), and if there is no
exception handler there, the program halts with a stack trace. Let’s take a look at an example:

>>> def faulty():
... raise Exception('Something is wrong')
...
>>> def ignore_exception():
... faulty()
...
>>> def handle_exception():
... try:
... faulty()
... except:
... print('Exception handled')
...
>>> ignore_exception()
Traceback (most recent call last):
 File '<stdin>', line 1, in ?
 File '<stdin>', line 2, in ignore_exception
 File '<stdin>', line 2, in faulty
Exception: Something is wrong
>>> handle_exception()
Exception handled

As you can see, the exception raised in faulty propagates through faulty and ignore_exception and finally
causes a stack trace. Similarly, it propagates through to handle_exception, but there it is handled with a
try/except statement.

The Zen of Exceptions
Exception handling isn’t very complicated. If you know that some part of your code may cause a certain
kind of exception and you don’t simply want your program to terminate with a stack trace if and when that
happens, then you add the necessary try/except or try/finally statements (or some combination thereof)
to deal with it, as needed.

Chapter 8 ■ Exceptions

159

Sometimes, you can accomplish the same thing with conditional statements as you can with exception
handling, but the conditional statements will probably end up being less natural and less readable. On the
other hand, some things that might seem like natural applications of if/else may in fact be implemented
much better with try/except. Let’s take a look at a couple of examples.

Let’s say you have a dictionary and you want to print the value stored under a specific key, if it is there.
If it isn’t there, you don’t want to do anything. The code might be something like this:

def describe_person(person):
 print('Description of', person['name'])
 print('Age:', person['age'])
 if 'occupation' in person:
 print('Occupation:', person['occupation'])

If you supply this function with a dictionary containing the name Throatwobbler Mangrove and the age 42
(but no occupation), you get the following output:

Description of Throatwobbler Mangrove
Age: 42

If you add the occupation “camper,” you get the following output:

Description of Throatwobbler Mangrove
Age: 42
Occupation: camper

The code is intuitive but a bit inefficient (although the main concern here is really code simplicity). It has to
look up the key 'occupation' twice—once to see whether the key exists (in the condition) and once to get
the value (to print it out). An alternative definition is as follows:

def describe_person(person):
 print('Description of', person['name'])
 print('Age:', person['age'])
 try:
 print('Occupation:', person['occupation'])
 except KeyError: pass

Here, the function simply assumes that the key 'occupation' is present. If you assume that it normally is,
this saves some effort. The value will be fetched and printed—no extra fetch to check whether it is indeed
there. If the key doesn’t exist, a KeyError exception is raised, which is trapped by the except clause.

You may also find try/except useful when checking whether an object has a specific attribute. Let’s say
you want to check whether an object has a write attribute, for example. Then you could use code like this:

try:
 obj.write
except AttributeError:
 print('The object is not writeable')
else:
 print('The object is writeable')

Chapter 8 ■ Exceptions

160

Here the try clause simply accesses the attribute without doing anything useful with it. If an
AttributeError is raised, the object doesn’t have the attribute; otherwise, it has the attribute. This is
a natural alternative to the getattr solution introduced in Chapter 7 (in the section “Interfaces and
Introspection”). Which one you prefer is largely a matter of taste.

Note that the gain in efficiency here isn’t great. (It’s more like really, really tiny.) In general (unless your
program is having performance problems), you shouldn’t worry about that sort of optimization too much.
The point is that using try/except statements is in many cases much more natural (more “Pythonic”) than
if/else, and you should get into the habit of using them where you can.1

Not All That Exceptional
If you just want to provide a warning that things aren’t exactly as they should be, you could use the warn
function from the warnings module.

>>> from warnings import warn
>>> warn("I've got a bad feeling about this.")
__main__:1: UserWarning: I've got a bad feeling about this.
>>>

The warning will be displayed only once. If you run the last line again, nothing will happen.
Other code using your module can suppress your warnings, or only specific kinds of warnings, using

the filterwarnings function from the same module, specifying one of several possible actions to take,
including "error" and "ignore".

>>> from warnings import filterwarnings
>>> filterwarnings("ignore")
>>> warn("Anyone out there?")
>>> filterwarnings("error")
>>> warn("Something is very wrong!")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UserWarning: Something is very wrong!

As you can see, the exception raised is UserWarning. You can specify a different exception, or warning
category, when you issue the warning. This exception should be a subclass of Warning. The exception you
supply will be used if you turn the warning into an error, but you can also use it to specifically filter out a
given kind of warnings.

>>> filterwarnings("error")
>>> warn("This function is really old...", DeprecationWarning)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
DeprecationWarning: This function is really old...
>>> filterwarnings("ignore", category=DeprecationWarning)
>>> warn("Another deprecation warning.", DeprecationWarning)

1The preference for try/except in Python is often explained through Rear Admiral Grace Hopper’s words of wisdom,
“It’s easier to ask forgiveness than permission.” This strategy of simply trying to do something and dealing with any
errors, rather than doing a lot of checking up front, is called the Leap Before You Look idiom.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 8 ■ Exceptions

161

>>> warn("Something else.")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UserWarning: Something else.

The warnings module has a few advanced bells and whistles beyond this basic use. Consult the library
reference if you’re curious.

A Quick Summary
The main topics covered in this chapter are as follows:

Exception objects: Exceptional situations (such as when an error has occurred)
are represented by exception objects. These can be manipulated in several ways,
but if ignored, they terminate your program.

Raising exceptions: You can raise exceptions with the raise statement. It
accepts either an exception class or an exception instance as its argument. You
can also supply two arguments (an exception and an error message). If you call
raise with no arguments in an except clause, it “reraises” the exception caught
by that clause.

Custom exception classes: You can create your own kinds of exceptions by
subclassing Exception.

Catching exceptions: You catch exceptions with the except clause of a try
statement. If you don’t specify a class in the except clause, all exceptions are
caught. You can specify more than one class by putting them in a tuple. If you
give two arguments to except, the second is bound to the exception object. You
can have several except clauses in the same try/except statement, to react
differently to different exceptions.

else clauses: You can use an else clause in addition to except. The else clause
is executed if no exceptions are raised in the main try block.

finally: You can use try/finally if you need to make sure that some code (for
example, cleanup code) is executed, regardless of whether or not an exception is
raised. This code is then put in the finally clause.

Exceptions and functions: When you raise an exception inside a function,
it propagates to the place where the function was called. (The same goes for
methods.)

Warnings: Warnings are similar to exceptions but will (in general) just print
out an error message. You can specify a warning category, which is a subclass of
Warning.

Chapter 8 ■ Exceptions

162

New Functions in This Chapter

Function Description

warnings.filterwarnings(action, category=Warning, ...) Used to filter out warnings

warnings.warn(message, category=None) Used to issue warnings

What Now?
While you might think that the material in this chapter was exceptional (pardon the pun), the next chapter is
truly magical. Well, almost magical.

163© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_9

CHAPTER 9

Magic Methods, Properties,
and Iterators

In Python, some names are spelled in a peculiar manner, with two leading and two trailing underscores. You
have already encountered some of these (__future__, for example). This spelling signals that the name has
a special significance—you should never invent such names for your own programs. One very prominent set
of such names in the language consists of the magic (or special) method names. If your object implements
one of these methods, that method will be called under specific circumstances (exactly which will depend
on the name) by Python. There is rarely any need to call these methods directly.

This chapter deals with a few important magic methods (most notably the __init__ method and some
methods dealing with item access, allowing you to create sequences or mappings of your own). It also
tackles two related topics: properties (dealt with through magic methods in previous versions of Python but
now handled by the property function) and iterators (which use the magic method __iter__ to enable them
to be used in for loops). You’ll find a meaty example at the end of the chapter, which uses some of the things
you have learned so far to solve a fairly difficult problem.

If You’re Not Using Python 3
A while ago (in version 2.2), the way Python objects work changed quite a bit. This change has several
consequences, most of which won’t be important to you as a beginning Python programmer. One thing is
worth noting, though: even if you’re using a recent version of Python 2, some features (such as properties
and the super function) won’t work on “old-style” classes. To make your classes “new-style,” you should
either put the assignment __metaclass__ = type at the top of your modules (as mentioned in Chapter 7)
or (directly or indirectly) subclass the built-in class object, or some other new-style class. Consider the
following two classes:

class NewStyle(object):
 more_code_here

class OldStyle:
 more_code_here

Of these two, NewStyle is a new-style class; OldStyle is an old-style class. If the file began with
__metaclass__ = type, though, both classes would be new-style.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 9 ■ Magic Methods, Properties, and Iterators

164

■■ Note  You can also assign to the __metaclass__ variable in the class scope of your class. That would set
the metaclass of only that class. Metaclasses are the classes of other classes—a rather advanced topic.

I do not explicitly set the metaclass (or subclass object) in all the examples in this book. However, if you do
not specifically need to make your programs compatible with old versions of Python, I advise you to make
all your classes new-style and consistently use features such as the super function (described in the section
“Using the super Function” later in this chapter).

Note that there are no “old-style” classes in Python 3 and no need to explicitly subclass object or set
the metaclass to type. All classes will implicitly be subclasses of object—directly, if you don’t specify a
superclass, or indirectly otherwise.

Constructors
The first magic method we’ll take a look at is the constructor. In case you have never heard the word
constructor before, it’s basically a fancy name for the kind of initializing method I have already used in some
of the examples, under the name __init__. What separates constructors from ordinary methods, however,
is that the constructors are called automatically right after an object has been created. Thus, instead of doing
what I’ve been doing up until now:

>>> f = FooBar()
>>> f.init()

constructors make it possible to simply do this:

>>> f = FooBar()

Creating constructors in Python is really easy; simply change the init method’s name from the plain old
init to the magic version, __init__.

class FooBar:
 def __init__(self):
 self.somevar = 42

>>> f = FooBar()
>>> f.somevar
42

Now, that’s pretty nice. But you may wonder what happens if you give the constructor some parameters to
work with. Consider the following:

class FooBar:
 def __init__(self, value=42):
 self.somevar = value

Chapter 9 ■ Magic Methods, Properties, and Iterators

165

How do you think you could use this? Because the parameter is optional, you certainly could go on like
nothing had happened. But what if you wanted to use it (or you hadn’t made it optional)? I’m sure you’ve
guessed it, but let me show you anyway.

>>> f = FooBar('This is a constructor argument')
>>> f.somevar
'This is a constructor argument'

Of all the magic methods in Python, __init__ is quite certainly the one you’ll be using the most.

■■ Note  Python has a magic method called __del__, also known as the destructor. It is called just before the
object is destroyed (garbage-collected), but because you cannot really know when (or if) this happens, I advise
you to stay away from __del__ if at all possible.

Overriding Methods in General, and the Constructor in Particular
In Chapter 7, you learned about inheritance. Each class may have one or more superclasses, from which
they inherit behavior. If a method is called (or an attribute is accessed) on an instance of class B and it is not
found, its superclass A will be searched. Consider the following two classes:

class A:
 def hello(self):
 print("Hello, I'm A.")

class B(A):
 pass

Class A defines a method called hello, which is inherited by class B. Here is an example of how these classes
work:

>>> a = A()
>>> b = B()
>>> a.hello()
Hello, I'm A.
>>> b.hello()
Hello, I'm A.

Because B does not define a hello method of its own, the original message is printed when hello is called.
One basic way of adding functionality in the subclass is simply to add methods. However, you may

want to customize the inherited behavior by overriding some of the superclass’s methods. For example, it is
possible for B to override the hello method. Consider this modified definition of B:

class B(A):
 def hello(self):
 print("Hello, I'm B.")

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 9 ■ Magic Methods, Properties, and Iterators

166

Using this definition, b.hello() will give a different result.

>>> b = B()
>>> b.hello()
Hello, I'm B.

Overriding is an important aspect of the inheritance mechanism in general and may be especially important
for constructors. Constructors are there to initialize the state of the newly constructed object, and most
subclasses will need to have initialization code of their own, in addition to that of the superclass. Even
though the mechanism for overriding is the same for all methods, you will most likely encounter one
particular problem more often when dealing with constructors than when overriding ordinary methods:
if you override the constructor of a class, you need to call the constructor of the superclass (the class you
inherit from) or risk having an object that isn’t properly initialized.

Consider the following class, Bird:

class Bird:
 def __init__(self):
 self.hungry = True
 def eat(self):
 if self.hungry:
 print('Aaaah ...')
 self.hungry = False
 else:
 print('No, thanks!')

This class defines one of the most basic capabilities of all birds: eating. Here is an example of how you might
use it:

>>> b = Bird()
>>> b.eat()
Aaaah ...
>>> b.eat()
No, thanks!

As you can see from this example, once the bird has eaten, it is no longer hungry. Now consider the subclass
SongBird, which adds singing to the repertoire of behaviors.

class SongBird(Bird):
 def __init__(self):
 self.sound = 'Squawk!'
 def sing(self):
 print(self.sound)

The SongBird class is just as easy to use as Bird.

>>> sb = SongBird()
>>> sb.sing()
Squawk!

Chapter 9 ■ Magic Methods, Properties, and Iterators

167

Because SongBird is a subclass of Bird, it inherits the eat method, but if you try to call it, you’ll discover a
problem.

>>> sb.eat()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "birds.py", line 6, in eat
 if self.hungry:
AttributeError: SongBird instance has no attribute 'hungry'

The exception is quite clear about what’s wrong: the SongBird has no attribute called hungry. Why should it?
In SongBird, the constructor is overridden, and the new constructor doesn’t contain any initialization code
dealing with the hungry attribute. To rectify the situation, the SongBird constructor must call the constructor
of its superclass, Bird, to make sure that the basic initialization takes place. There are basically two ways of
doing this: by calling the unbound version of the superclass’s constructor or by using the super function. In
the next two sections, I explain both techniques.

Calling the Unbound Superclass Constructor
The approach described in this section is, perhaps, mainly of historical interest. With current versions of
Python, using the super function (as explained in the following section) is clearly the way to go. However,
much existing code uses the approach described in this section, so you need to know about it. Also, it can be
quite instructive—it’s a nice example of the difference between bound and unbound methods.

Now, let’s get down to business. If you find the title of this section a bit intimidating, relax. Calling
the constructor of a superclass is, in fact, very easy (and useful). I’ll start by giving you the solution to the
problem posed at the end of the previous section.

class SongBird(Bird):
 def __init__(self):
 Bird.__init__(self)
 self.sound = 'Squawk!'
 def sing(self):
 print(self.sound)

Only one line has been added to the SongBird class, containing the code Bird.__init__(self). Before I
explain what this really means, let me just show you that this really works.

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah ...
>>> sb.eat()
No, thanks!

Chapter 9 ■ Magic Methods, Properties, and Iterators

168

But why does this work? When you retrieve a method from an instance, the self argument of the method
is automatically bound to the instance (a so-called bound method). You’ve seen several examples of that.
However, if you retrieve the method directly from the class (such as in Bird.__init__), there is no instance
to which to bind. Therefore, you are free to supply any self you want to. Such a method is called unbound,
which explains the title of this section.

By supplying the current instance as the self argument to the unbound method, the songbird gets the
full treatment from its superclass’s constructor (which means that it has its hungry attribute set).

Using the super Function
If you’re not stuck with an old version of Python, the super function is really the way to go. It works only with
new-style classes, but you should be using those anyway. It is called with the current class and instance as
its arguments, and any method you call on the returned object will be fetched from the superclass rather
than the current class. So, instead of using Bird in the SongBird constructor, you can use super(SongBird,
self). Also, the __init__ method can be called in a normal (bound) fashion. In Python 3, super can—and
generally should—be called without any arguments and will do its job as if “by magic.”

The following is an updated version of the bird example:

class Bird:
 def __init__(self):
 self.hungry = True
 def eat(self):
 if self.hungry:
 print('Aaaah ...')
 self.hungry = False
 else:
 print('No, thanks!')

class SongBird(Bird):
 def __init__(self):
 super().__init__()
 self.sound = 'Squawk!'
 def sing(self):
 print(self.sound)

This new-style version works just like the old-style one:

>>> sb = SongBird()
>>> sb.sing()
Squawk!
>>> sb.eat()
Aaaah ...
>>> sb.eat()
No, thanks!

Chapter 9 ■ Magic Methods, Properties, and Iterators

169

WHAT’S SO SUPER ABOUT SUPER?

In my opinion, the super function is more intuitive than calling unbound methods on the superclass
directly, but that is not its only strength. The super function is actually quite smart, so even if you have
multiple superclasses, you only need to use super once (provided that all the superclass constructors
also use super). Also, some obscure situations that are tricky when using old-style classes (for example,
when two of your superclasses share a superclass) are automatically dealt with by new-style classes
and super. You don’t need to understand exactly how it works internally, but you should be aware
that, in most cases, it is clearly superior to calling the unbound constructors (or other methods) of your
superclasses.

So, what does super return, really? Normally, you don’t need to worry about it, and you can just pretend
it returns the superclass you need. What it actually does is return a super object, which will take care of
method resolution for you. When you access an attribute on it, it will look through all your superclasses
(and super-superclasses, and so forth) until it finds the attribute, or raises an AttributeError.

Item Access
Although __init__ is by far the most important special method you’ll encounter, many others are available
to enable you to achieve quite a lot of cool things. One useful set of magic methods described in this section
allows you to create objects that behave like sequences or mappings.

The basic sequence and mapping protocol is pretty simple. However, to implement all the functionality
of sequences and mappings, there are many magic methods to implement. Luckily, there are some
shortcuts, but I’ll get to that.

■■ Note  The word protocol is often used in Python to describe the rules governing some form of behavior.
This is somewhat similar to the notion of interfaces mentioned in Chapter 7. The protocol says something about
which methods you should implement and what those methods should do. Because polymorphism in Python
is based on only the object’s behavior (and not on its ancestry, for example, its class or superclass, and so
forth), this is an important concept: where other languages might require an object to belong to a certain class
or to implement a certain interface, Python often simply requires it to follow some given protocol. So, to be a
sequence, all you have to do is follow the sequence protocol.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 9 ■ Magic Methods, Properties, and Iterators

170

The Basic Sequence and Mapping Protocol
Sequences and mappings are basically collections of items. To implement their basic behavior (protocol),
you need two magic methods if your objects are immutable, or four if they are mutable.

__len__(self): This method should return the number of items contained in the
collection. For a sequence, this would simply be the number of elements. For a
mapping, it would be the number of key-value pairs. If __len__ returns zero (and
you don’t implement __nonzero__, which overrides this behavior), the object
is treated as false in a Boolean context (as with empty lists, tuples, strings, and
dictionaries).

__getitem__(self, key): This should return the value corresponding to the
given key. For a sequence, the key should be an integer from zero to n–1 (or, it
could be negative, as noted later), where n is the length of the sequence. For a
mapping, you could really have any kind of keys.

__setitem__(self, key, value): This should store value in a manner
associated with key, so it can later be retrieved with __getitem__. Of course, you
define this method only for mutable objects.

__delitem__(self, key): This is called when someone uses the __del__
statement on a part of the object and should delete the element associated with
key. Again, only mutable objects (and not all of them—only those for which you
want to let items be removed) should define this method.

Some extra requirements are imposed on these methods.

•	 For a sequence, if the key is a negative integer, it should be used to count from the
end. In other words, treat x[-n] the same as x[len(x)-n].

•	 If the key is of an inappropriate type (such as a string key used on a sequence), a
TypeError may be raised.

•	 If the index of a sequence is of the right type, but outside the allowed range, an
IndexError should be raised.

For a more extensive interface, along with a suitable abstract base class (Sequence), consult the
documentation for the collections module.

Let’s have a go at it—let’s see if we can create an infinite sequence.

def check_index(key):
 """
 Is the given key an acceptable index?

 To be acceptable, the key should be a non-negative integer. If it
 is not an integer, a TypeError is raised; if it is negative, an
 IndexError is raised (since the sequence is of infinite length).
 """
 if not isinstance(key, int): raise TypeError
 if key < 0: raise IndexError

Chapter 9 ■ Magic Methods, Properties, and Iterators

171

class ArithmeticSequence:

 def __init__(self, start=0, step=1):
 """
 Initialize the arithmetic sequence.

 start - the first value in the sequence
 step - the difference between two adjacent values
 changed - a dictionary of values that have been modified by
 the user
 """
 self.start = start # Store the start value
 self.step = step # Store the step value
 self.changed = {} # No items have been modified

 def __getitem__(self, key):
 """
 Get an item from the arithmetic sequence.
 """
 check_index(key)

 try: return self.changed[key] # Modified?
 except KeyError: # otherwise ...
 return self.start + key * self.step # ... calculate the value

 def __setitem__(self, key, value):
 """
 Change an item in the arithmetic sequence.
 """
 check_index(key)

 self.changed[key] = value # Store the changed value

This implements an arithmetic sequence—a sequence of numbers in which each is greater than the previous
one by a constant amount. The first value is given by the constructor parameter start (defaulting to zero),
while the step between the values is given by step (defaulting to one). You allow the user to change some
of the elements by keeping the exceptions to the general rule in a dictionary called changed. If the element
hasn’t been changed, it is calculated as self.start + key * self.step.

Here is an example of how you can use this class:

>>> s = ArithmeticSequence(1, 2)
>>> s[4]
9
>>> s[4] = 2
>>> s[4]
2
>>> s[5]
11

Chapter 9 ■ Magic Methods, Properties, and Iterators

172

Note that I want it to be illegal to delete items, which is why I haven’t implemented __del__:

>>> del s[4]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: ArithmeticSequence instance has no attribute '__delitem__'

Also, the class has no __len__ method because it is of infinite length.
If an illegal type of index is used, a TypeError is raised, and if the index is the correct type but out of

range (that is, negative in this case), an IndexError is raised.

>>> s["four"]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 check_index(key)
 File "arithseq.py", line 10, in checkIndex
 if not isinstance(key, int): raise TypeError
TypeError
>>> s[-42]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "arithseq.py", line 31, in __getitem__
 check_index(key)
 File "arithseq.py", line 11, in checkIndex
 if key < 0: raise IndexError
IndexError

The index checking is taken care of by a utility function I’ve written for the purpose, check_index.

Subclassing list, dict, and str
While the four methods of the basic sequence/mapping protocol will get you far, sequences may have many
other useful magic and ordinary methods, including the __iter__ method, which I describe in the section
“Iterators” later in this chapter. Implementing all these methods is a lot of work and hard to get right. If you
want custom behavior in only one of the operations, it makes no sense that you should need to reimplement
all of the others. It’s just programmer laziness (also called common sense).

So what should you do? The magic word is inheritance. Why reimplement all of these things when you
can inherit them? The standard library comes with abstract and concrete base classes in the collections
module, but you can also simply subclass the built-in types themselves. So, if you want to implement a
sequence type that behaves similarly to the built-in lists, you can simply subclass list.

Let’s just do a quick example—a list with an access counter.

class CounterList(list):
 def __init__(self, *args):
 super().__init__(*args)
 self.counter = 0
 def __getitem__(self, index):
 self.counter += 1
 return super(CounterList, self).__getitem__(index)

Chapter 9 ■ Magic Methods, Properties, and Iterators

173

The CounterList class relies heavily on the behavior of its subclass superclass (list). Any methods not
overridden by CounterList (such as append, extend, index, and so on) may be used directly. In the two
methods that are overridden, super is used to call the superclass version of the method, adding only the
necessary behavior of initializing the counter attribute (in __init__) and updating the counter attribute
(in __getitem__).

■■ Note  Overriding __getitem__ is not a bulletproof way of trapping user access because there are other
ways of accessing the list contents, such as through the pop method.

Here is an example of how CounterList may be used:

>>> cl = CounterList(range(10))
>>> cl
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> cl.reverse()
>>> cl
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> del cl[3:6]
>>> cl
[9, 8, 7, 3, 2, 1, 0]
>>> cl.counter
0
>>> cl[4] + cl[2]
9
>>> cl.counter
2

As you can see, CounterList works just like list in most respects. However, it has a counter attribute
(initially zero), which is incremented each time you access a list element. After performing the addition
cl[4] + cl[2], the counter has been incremented twice, to the value 2.

More Magic
Special (magic) names exist for many purposes—what I’ve shown you so far is just a small taste of what is
possible. Most of the magic methods available are meant for fairly advanced use, so I won’t go into detail
here. However, if you are interested, it is possible to emulate numbers, make objects that can be called as
if they were functions, influence how objects are compared, and much more. For more information about
which magic methods are available, see section “Special method names” in the Python Reference Manual.

Chapter 9 ■ Magic Methods, Properties, and Iterators

174

Properties
In Chapter 7, I mentioned accessor methods. Accessors are simply methods with names such as getHeight
and setHeight and are used to retrieve or rebind some attribute (which may be private to the class—see
the section “Privacy Revisited” in Chapter 7). Encapsulating state variables (attributes) like this can be
important if certain actions must be taken when accessing the given attribute. For example, consider the
following Rectangle class:

class Rectangle:
 def __init__(self):
 self.width = 0
 self.height = 0
 def set_size(self, size):
 self.width, self.height = size
 def get_size(self):
 return self.width, self.height

Here is an example of how you can use the class:

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.get_size()
(10, 5)
>>> r.set_size((150, 100))
>>> r.width
150

The get_size and set_size methods are accessors for a fictitious attribute called size—which is simply
the tuple consisting of width and height. (Feel free to replace this with something more exciting, such as
the area of the rectangle or the length of its diagonal.) This code isn’t directly wrong, but it is flawed. The
programmer using this class shouldn’t need to worry about how it is implemented (encapsulation). If you
someday wanted to change the implementation so that size was a real attribute and width and height
were calculated on the fly, you would need to wrap them in accessors, and any programs using the class
would also have to be rewritten. The client code (the code using your code) should be able to treat all your
attributes in the same manner.

So what is the solution? Should you wrap all your attributes in accessors? That is a possibility, of course.
However, it would be impractical (and kind of silly) if you had a lot of simple attributes, because you would
need to write many accessors that did nothing but retrieve or set these attributes, with no useful action
taken. This smells of copy-paste programming, or cookiecutter code, which is clearly a bad thing (although
quite common for this specific problem in certain languages). Luckily, Python can hide your accessors for
you, making all of your attributes look alike. Those attributes that are defined through their accessors are
often called properties.

Python actually has two mechanisms for creating properties in Python. I’ll focus on the most recent
one, the property function, which works only on new-style classes. Then I’ll give you a short description of
how to implement properties with magic methods.

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 9 ■ Magic Methods, Properties, and Iterators

175

The property Function
Using the property function is delightfully simple. If you have already written a class such as Rectangle
from the previous section, you need to add only a single line of code.

class Rectangle:
 def __init__ (self):
 self.width = 0
 self.height = 0
 def set_size(self, size):
 self.width, self.height = size
 def get_size(self):
 return self.width, self.height
 size = property(get_size, set_size)

In this new version of Rectangle, a property is created with the property function with the accessor
functions as arguments (the getter first, then the setter), and the name size is then bound to this property.
After this, you no longer need to worry about how things are implemented but can treat width, height, and
size the same way.

>>> r = Rectangle()
>>> r.width = 10
>>> r.height = 5
>>> r.size
(10, 5)
>>> r.size = 150, 100
>>> r.width
150

As you can see, the size attribute is still subject to the calculations in get_size and set_size, but it looks
just like a normal attribute.

■■ Note  If your properties are behaving oddly, make sure you’re using a new-style class (by subclassing
object either directly or indirectly—or by setting the metaclass directly). If you aren’t, the getter part of the
property will still work, but the setter may not (depending on your Python version). This can be a bit confusing.

In fact, the property function may be called with zero, one, three, or four arguments as well. If called without
any arguments, the resulting property is neither readable nor writable. If called with only one argument (a
getter method), the property is readable only. The third (optional) argument is a method used to delete the
attribute (it takes no arguments). The fourth (optional) argument is a docstring. The parameters are called
fget, fset, fdel, and doc—you can use them as keyword arguments if you want a property that, say, is only
writable and has a docstring.

Although this section has been short (a testament to the simplicity of the property function), it is very
important. The moral is this: with new-style classes, you should use property rather than accessors.

Chapter 9 ■ Magic Methods, Properties, and Iterators

176

BUT HOW DOES IT WORK?

In case you’re curious about how property does its magic, I’ll give you an explanation here. If you don’t
care, just skip ahead.

The fact is that property isn’t really a function—it’s a class whose instances have some magic methods
that do all the work. The methods in question are __get__, __set__, and __delete__. Together, these
three methods define the so-called descriptor protocol. An object implementing any of these methods
is a descriptor. The special thing about descriptors is how they are accessed. For example, when
reading an attribute (specifically, when accessing it in an instance, but when the attribute is defined in
the class), if the attribute is bound to an object that implements __get__, the object won’t simply be
returned; instead, the __get__ method will be called, and the resulting value will be returned. This is, in
fact, the mechanism underlying properties, bound methods, static and class methods (see the following
section for more information), and super.

For more on descriptors, see the Descriptor HowTo Guide (https://docs.python.org/3/howto/
descriptor.html).

Static Methods and Class Methods
Before discussing the old way of implementing properties, let’s take a slight detour and look at another
couple of features that are implemented in a similar manner to the new-style properties. Static methods and
class methods are created by wrapping methods in objects of the staticmethod and classmethod classes,
respectively. Static methods are defined without self arguments, and they can be called directly on the class
itself. Class methods are defined with a self-like parameter normally called cls. You can call class methods
directly on the class object too, but the cls parameter then automatically is bound to the class. Here is a
simple example:

class MyClass:

 def smeth():
 print('This is a static method')
 smeth = staticmethod(smeth)

 def cmeth(cls):
 print('This is a class method of', cls)
 cmeth = classmethod(cmeth)

The technique of wrapping and replacing the methods manually like this is a bit tedious. In Python 2.4, a
new syntax was introduced for wrapping methods like this, called decorators. (They actually work with any
callable objects as wrappers and can be used on both methods and functions.) You specify one or more
decorators (which are applied in reverse order) by listing them above the method (or function), using the @
operator.

https://docs.python.org/3/howto/descriptor.html
https://docs.python.org/3/howto/descriptor.html

Chapter 9 ■ Magic Methods, Properties, and Iterators

177

class MyClass:

 @staticmethod
 def smeth():
 print('This is a static method')

 @classmethod
 def cmeth(cls):
 print('This is a class method of', cls)

Once you’ve defined these methods, they can be used like this (that is, without instantiating the class):

>>> MyClass.smeth()
This is a static method
>>> MyClass.cmeth()
This is a class method of <class '__main__.MyClass'>

Static methods and class methods haven’t historically been important in Python, mainly because you could
always use functions or bound methods instead, in some way, but also because the support hasn’t really
been there in earlier versions. So even though you may not see them used much in current code, they do
have their uses (such as factory functions, if you’ve heard of those), and you may well think of some new
ones.

■■ Note  You can actually use the decorator syntax with properties as well. See the documentation on the
property function for details.

__getattr__, __setattr__, and Friends
It’s possible to intercept every attribute access on an object. Among other things, you could use this to
implement properties with old-style classes (where property won’t necessarily work as it should). To have
code executed when an attribute is accessed, you must use a couple of magic methods. The following four
provide all the functionality you need (in old-style classes, you only use the last three):

__getattribute__(self, name): Automatically called when the attribute name is
accessed. (This works correctly on new-style classes only.)

__getattr__(self, name): Automatically called when the attribute name is
accessed and the object has no such attribute.

__setattr__(self, name, value): Automatically called when an attempt is
made to bind the attribute name to value.

__delattr__(self, name): Automatically called when an attempt is made to
delete the attribute name.

Although a bit trickier to use (and in some ways less efficient) than property, these magic methods are quite
powerful, because you can write code in one of these methods that deals with several properties.
(If you have a choice, though, stick with property.)

Chapter 9 ■ Magic Methods, Properties, and Iterators

178

Here is the Rectangle example again, this time with magic methods:

class Rectangle:
 def __init__ (self):
 self.width = 0
 self.height = 0
 def __setattr__(self, name, value):
 if name == 'size':
 self.width, self.height = value
 else:
 self. __dict__[name] = value
 def __getattr__(self, name):
 if name == 'size':
 return self.width, self.height
 else:
 raise AttributeError()

As you can see, this version of the class needs to take care of additional administrative details. When
considering this code example, it’s important to note the following:

•	 The __setattr__ method is called even if the attribute in question is not size.
Therefore, the method must take both cases into consideration: if the attribute is
size, the same operation is performed as before; otherwise, the magic attribute
__dict__ is used. It contains a dictionary with all the instance attributes. It is used
instead of ordinary attribute assignment to avoid having __setattr__ called again
(which would cause the program to loop endlessly).

•	 The __getattr__ method is called only if a normal attribute is not found, which
means that if the given name is not size, the attribute does not exist, and the method
raises an AttributeError. This is important if you want the class to work correctly
with built-in functions such as hasattr and getattr. If the name is size, the
expression found in the previous implementation is used.

■■ Note  Just as there is an “endless loop” trap associated with __setattr__, there is a trap associated with
__getattribute__. Because it intercepts all attribute accesses (in new-style classes), it will intercept accesses
to __dict__ as well! The only safe way to access attributes on self inside __getattribute__ is to use the
__getattribute__ method of the superclass (using super).

Iterators
I’ve mentioned iterators (and iterables) briefly in preceding chapters. In this section, I go into some more
detail. I cover only one magic method, __iter__, which is the basis of the iterator protocol.

The Iterator Protocol
To iterate means to repeat something several times—what you do with loops. Until now I have iterated over
only sequences and dictionaries in for loops, but the truth is that you can iterate over other objects, too:
objects that implement the __iter__ method.

Chapter 9 ■ Magic Methods, Properties, and Iterators

179

The __iter__ method returns an iterator, which is any object with a method called __next__, which
is callable without any arguments. When you call the __next__ method, the iterator should return its “next
value.” If the method is called and the iterator has no more values to return, it should raise a StopIteration
exception. There is a built-in convenience function called next that you can use, where next(it) is
equivalent to it.__next__().

■■ Note  The iterator protocol is changed a bit in Python 3. In the old protocol, iterator objects should have a
method called next rather than __next__.

What’s the point? Why not just use a list? Because it may often be overkill. If you have a function that can
compute values one by one, you may need them only one by one—not all at once, in a list, for example. If the
number of values is large, the list may take up too much memory. But there are other reasons: using iterators
is more general, simpler, and more elegant. Let’s take a look at an example you couldn’t do with a list, simply
because the list would need to be of infinite length!

Our “list” is the sequence of Fibonacci numbers. An iterator for these could be the following:

class Fibs:
 def __init__(self):
 self.a = 0
 self.b = 1
 def __next__(self):
 self.a, self.b = self.b, self.a + self.b
 return self.a
 def __iter__(self):
 return self

Note that the iterator implements the __iter__ method, which will, in fact, return the iterator itself. In many
cases, you would put the __iter__ method in another object, which you would use in the for loop. That
would then return your iterator. It is recommended that iterators implement an __iter__ method of their
own in addition (returning self, just as I did here), so they themselves can be used directly in for loops.

■■ Note  More formally, an object that implements the __iter__ method is iterable, and the object
implementing next is the iterator.

First, make a Fibs object.

>>> fibs = Fibs()

You can then use it in a for loop—for example, to find the smallest Fibonacci number that is greater than
1,000.

>>> for f in fibs:
... if f > 1000:
... print(f)
... break
...
1597

Chapter 9 ■ Magic Methods, Properties, and Iterators

180

Here, the loop stops because I issue a break inside it; if I didn’t, the for loop would never end.

■■ Tip  The built-in function iter can be used to get an iterator from an iterable object.

>>> it = iter([1, 2, 3])

>>> next(it)

1

>>> next(it)

2

It can also be used to create an iterable from a function or other callable object (see the library reference for
details).

Making Sequences from Iterators
In addition to iterating over the iterators and iterables (which is what you normally do), you can convert
them to sequences. In most contexts in which you can use a sequence (except in operations such as indexing
or slicing), you can use an iterator (or an iterable object) instead. One useful example of this is explicitly
converting an iterator to a list using the list constructor.

>>> class TestIterator:
... value = 0
... def __next__(self):
... self.value += 1
... if self.value > 10: raise StopIteration
... return self.value
... def __iter__(self):
... return self
...
>>> ti = TestIterator()
>>> list(ti)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Generators
Generators (also called simple generators for historical reasons) are relatively new to Python and are (along
with iterators) perhaps one of the most powerful features to come along for years. However, the generator
concept is rather advanced, and it may take a while before it “clicks” and you see how it works or how it
would be useful for you. Rest assured that while generators can help you write really elegant code, you can
certainly write any program you wish without a trace of generators.

Chapter 9 ■ Magic Methods, Properties, and Iterators

181

A generator is a kind of iterator that is defined with normal function syntax. Exactly how generators
work is best shown through example. Let’s first take a look at how you make them and use them and then
take a peek under the hood.

Making a Generator
Making a generator is simple; it’s just like making a function. I’m sure you are starting to tire of the good old
Fibonacci sequence by now, so let me do something else. I’ll make a function that flattens nested lists. The
argument is a list that may look something like this:

nested = [[1, 2], [3, 4], [5]]

In other words, it’s a list of lists. My function should then give me the numbers in order. Here’s a solution:

def flatten(nested):
 for sublist in nested:
 for element in sublist:
 yield element

Most of this function is pretty simple. First, it iterates over all the sublists of the supplied nested list; then it
iterates over the elements of each sublist in order. If the last line had been print(element), for example, the
function would have been easy to understand, right?

So what’s new here is the yield statement. Any function that contains a yield statement is called a
generator. And it’s not just a matter of naming; it will behave quite differently from ordinary functions. The
difference is that instead of returning one value, as you do with return, you can yield several values, one at
a time. Each time a value is yielded (with yield), the function freezes; that is, it stops its execution at exactly
that point and waits to be reawakened. When it is, it resumes its execution at the point where it stopped.

I can make use of all the values by iterating over the generator.

>>> nested = [[1, 2], [3, 4], [5]]
>>> for num in flatten(nested):
... print(num)
...
1
2
3
4
5

or

>>> list(flatten(nested))
[1, 2, 3, 4, 5]

Chapter 9 ■ Magic Methods, Properties, and Iterators

182

LOOPY GENERATORS

In Python 2.4, a relative of list comprehension (see Chapter 5) was introduced: generator
comprehension (or generator expressions). It works in the same way as list comprehension, except that
a list isn’t constructed (and the “body” isn’t looped over immediately). Instead, a generator is returned,
allowing you to perform the computation step by step.

>>> g = ((i + 2) ** 2 for i in range(2, 27))
>>> next(g)
16

As you can see, this differs from list comprehension in the use of plain parentheses. In a simple case
such as this, I might as well have used a list comprehension. However, if you wish to “wrap” an iterable
object (possibly yielding a huge number of values), a list comprehension would void the advantages of
iteration by immediately instantiating a list.

A neat bonus is that when using generator comprehension directly inside a pair of existing parentheses,
such as in a function call, you don’t need to add another pair. In other words, you can write pretty code
like this:

sum(i ** 2 for i in range(10))

A Recursive Generator
The generator I designed in the previous section could deal only with lists nested two levels deep, and to do
that it used two for loops. What if you have a set of lists nested arbitrarily deeply? Perhaps you use them to
represent some tree structure, for example. (You can also do that with specific tree classes, but the strategy is
the same.) You need a for loop for each level of nesting, but because you don’t know how many levels there
are, you must change your solution to be more flexible. It’s time to turn to the magic of recursion.

def flatten(nested):
 try:
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

When flatten is called, you have two possibilities (as is always the case when dealing with recursion): the
base case and the recursive case. In the base case, the function is told to flatten a single element (for example,
a number), in which case the for loop raises a TypeError (because you’re trying to iterate over a number),
and the generator simply yields the element.

If you are told to flatten a list (or any iterable), however, you need to do some work. You go through all
the sublists (some of which may not really be lists) and call flatten on them. Then you yield all the elements
of the flattened sublists by using another for loop. It may seem slightly magical, but it works.

>>> list(flatten([[[1], 2], 3, 4, [5, [6, 7]], 8]))
[1, 2, 3, 4, 5, 6, 7, 8]

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 9 ■ Magic Methods, Properties, and Iterators

183

There is one problem with this, however. If nested is a string or string-like object, it is a sequence and will
not raise TypeError, yet you do not want to iterate over it.

■■ Note  There are two main reasons why you shouldn’t iterate over string-like objects in the flatten
function. First, you want to treat string-like objects as atomic values, not as sequences that should be flattened.
Second, iterating over them would actually lead to infinite recursion because the first element of a string is
another string of length one, and the first element of that string is the string itself!

To deal with this, you must add a test at the beginning of the generator. Trying to concatenate the object with
a string and seeing if a TypeError results is the simplest and fastest way to check whether an object is string-
like.1 Here is the generator with the added test:

def flatten(nested):
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 yield element
 except TypeError:
 yield nested

As you can see, if the expression nested + '' raises a TypeError, it is ignored; however, if the expression
does not raise a TypeError, the else clause of the inner try statement raises a TypeError of its own. This
causes the string-like object to be yielded as is (in the outer except clause). Got it?

Here is an example to demonstrate that this version works with strings as well:

>>> list(flatten(['foo', ['bar', ['baz']]]))
['foo', 'bar', 'baz']

Note that there is no type checking going on here. I don’t test whether nested is a string, only whether it
behaves like one (that is, it can be concatenated with a string). A natural alternative to this test would be to
use isinstance with some abstract superclass for strings and string-like objects, but unfortunately there is
no such standard class. And type checking against str would not work even for UserString.

Generators in General
If you followed the examples so far, you know how to use generators, more or less. You’ve seen that a
generator is a function that contains the keyword yield. When it is called, the code in the function body is
not executed. Instead, an iterator is returned. Each time a value is requested, the code in the generator is
executed until a yield or a return is encountered. A yield means that a value should be yielded. A return
means that the generator should stop executing (without yielding anything more; return can be called
without arguments only when used inside a generator).

1Thanks to Alex Martelli for pointing out this idiom and the importance of using it here.

Chapter 9 ■ Magic Methods, Properties, and Iterators

184

In other words, generators consist of two separate components: the generator-function and the
generator-iterator. The generator-function is what is defined by the def statement containing a yield. The
generator-iterator is what this function returns. In less precise terms, these two entities are often treated as
one and collectively called a generator.

>>> def simple_generator():
 yield 1
...
>>> simple_generator
<function simple_generator at 153b44>
>>> simple_generator()
<generator object at 1510b0>

The iterator returned by the generator-function can be used just like any other iterator.

Generator Methods
We may supply generators with values after they have started running, by using a communications channel
between the generator and the “outside world,” with the following two end points:

•	 The outside world has access to a method on the generator called send, which works
just like next, except that it takes a single argument (the “message” to send—an
arbitrary object).

•	 Inside the suspended generator, yield may now be used as an expression, rather
than a statement. In other words, when the generator is resumed, yield returns a
value—the value sent from the outside through send. If next was used, yield returns
None.

Note that using send (rather than next) makes sense only after the generator has been suspended (that is,
after it has hit the first yield). If you need to give some information to the generator before that, you can
simply use the parameters of the generator-function.

■■ Tip  If you really want to use send on a newly started generator, you can use it with None as its parameter.

Here’s a rather silly example that illustrates the mechanism:

def repeater(value):
 while True:
 new = (yield value)
 if new is not None: value = new

Here’s an example of its use:

>>> r = repeater(42)
>>> next(r)
42
>>> r.send("Hello, world!")
"Hello, world!"

Chapter 9 ■ Magic Methods, Properties, and Iterators

185

Note the use of parentheses around the yield expression. While not strictly necessary in some cases, it is
probably better to be safe than sorry and simply always enclose yield expressions in parentheses if you are
using the return value in some way.

Generators also have two other methods.

•	 The throw method (called with an exception type, an optional value, and traceback
object) is used to raise an exception inside the generator (at the yield expression).

•	 The close method (called with no arguments) is used to stop the generator.

The close method (which is also called by the Python garbage collector, when needed) is also based on
exceptions. It raises the GeneratorExit exception at the yield point, so if you want to have some cleanup
code in your generator, you can wrap your yield in a try/finally statement. If you wish, you can also catch
the GeneratorExit exception, but then you must reraise it (possibly after cleaning up a bit), raise another
exception, or simply return. Trying to yield a value from a generator after close has been called on it will
result in a RuntimeError.

■■ Tip  For more information about generator methods and how they actually turn generators into simple
coroutines, see PEP 342 (www.python.org/dev/peps/pep-0342/).

Simulating Generators
If you need to use an older version of Python, generators aren’t available. What follows is a simple recipe for
simulating them with normal functions.

Starting with the code for the generator, begin by inserting the following line at the beginning of the
function body:

result = []

If the code already uses the name result, you should come up with another. (Using a more descriptive name
may be a good idea anyway.) Then replace all lines of this form:

yield some_expression with this:
result.append(some_expression)

Finally, at the end of the function, add this line:

return result

Although this may not work with all generators, it works with most. (For example, it fails with infinite
generators, which of course can’t stuff their values into a list.)

http://www.python.org/dev/peps/pep-0342/

Chapter 9 ■ Magic Methods, Properties, and Iterators

186

Here is the flatten generator rewritten as a plain function:

def flatten(nested):
 result = []
 try:
 # Don't iterate over string-like objects:
 try: nested + ''
 except TypeError: pass
 else: raise TypeError
 for sublist in nested:
 for element in flatten(sublist):
 result.append(element)
 except TypeError:
 result.append(nested)
 return result

The Eight Queens
Now that you’ve learned about all this magic, it’s time to put it to work. In this section, you see how to use
generators to solve a classic programming problem.

Generators and Backtracking
Generators are ideal for complex recursive algorithms that gradually build a result. Without generators,
these algorithms usually require you to pass a half-built solution around as an extra parameter so that the
recursive calls can build on it. With generators, all the recursive calls need to do is yield their part. That
is what I did with the preceding recursive version of flatten, and you can use the exact same strategy to
traverse graphs and tree structures.

In some applications, however, you don’t get the answer right away; you need to try several alternatives,
and you need to do that on every level in your recursion. To draw a parallel from real life, imagine that you
have an important meeting to attend. You’re not sure where it is, but you have two doors in front of you,
and the meeting room has to be behind one of them. You choose the left and step through. There, you face
another two doors. You choose the left, but it turns out to be wrong. So you backtrack and choose the right
door, which also turns out to be wrong (excuse the pun). So, you backtrack again, to the point where you
started, ready to try the right door there.

GRAPHS AND TREES

If you have never heard of graphs and trees before, you should learn about them as soon as possible,
because they are very important concepts in programming and computer science. To find out more,
you should probably get a book about computer science, discrete mathematics, data structures, or
algorithms. For some concise definitions, you can check out the following web pages:

•	 http://mathworld.wolfram.com/Graph.html

•	 http://mathworld.wolfram.com/Tree.html

•	 www.nist.gov/dads/HTML/tree.html

•	 www.nist.gov/dads/HTML/graph.html

http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/Tree.html
http://www.nist.gov/dads/HTML/tree.html
http://www.nist.gov/dads/HTML/graph.html

Chapter 9 ■ Magic Methods, Properties, and Iterators

187

A quick web search or some browsing in Wikipedia (http://wikipedia.org) will turn up a lot of
material.

This strategy of backtracking is useful for solving problems that require you to try every combination
until you find a solution. Such problems are solved like this:

Pseudocode
for each possibility at level 1:
 for each possibility at level 2:
 ...
 for each possibility at level n:
 is it viable?

To implement this directly with for loops, you need to know how many levels you’ll encounter. If that is
not possible, you use recursion.

The Problem
This is a much loved computer science puzzle: you have a chessboard and eight queen pieces to place on it.
The only requirement is that none of the queens threatens any of the others; that is, you must place them so
that no two queens can capture each other. How do you do this? Where should the queens be placed?

This is a typical backtracking problem: you try one position for the first queen (in the first row), advance
to the second, and so on. If you find that you are unable to place a queen, you backtrack to the previous one
and try another position. Finally, you either exhaust all possibilities or find a solution.

In the problem as stated, you are provided with information that there will be only eight queens, but
let’s assume that there can be any number of queens. (This is more similar to real-world backtracking
problems.) How do you solve that? If you want to try to solve it yourself, you should stop reading now,
because I’m about to give you the solution.

■■ Note  You can find much more efficient solutions for this problem. If you want more details, a web search
should turn up a wealth of information.

State Representation
To represent a possible solution (or part of it), you can simply use a tuple (or a list, for that matter). Each
element of the tuple indicates the position (that is, column) of the queen of the corresponding row. So if
state[0] == 3, you know that the queen in row one is positioned in column four (we are counting from
zero, remember?). When working at one level of recursion (one specific row), you know only which positions
the queens above have, so you may have a state tuple whose length is less than eight (or whatever the
number of queens is).

■■ Note  I could well have used a list instead of a tuple to represent the state. It’s mostly a matter of taste in
this case. In general, if the sequence is small and static, tuples may be a good choice.

http://wikipedia.org/

Chapter 9 ■ Magic Methods, Properties, and Iterators

188

Finding Conflicts
Let’s start by doing some simple abstraction. To find a configuration in which there are no conflicts (where
no queen may capture another), you first must define what a conflict is. And why not define it as a function
while you’re at it?

The conflict function is given the positions of the queens so far (in the form of a state tuple) and
determines if a position for the next queen generates any new conflicts.

def conflict(state, nextX):
 nextY = len(state)
 for i in range(nextY):
 if abs(state[i] - nextX) in (0, nextY - i):
 return True
 return False

The nextX parameter is the suggested horizontal position (x coordinate, or column) of the next queen, and
nextY is the vertical position (y coordinate, or row) of the next queen. This function does a simple check
for each of the previous queens. If the next queen has the same x coordinate or is on the same diagonal as
(nextX, nextY), a conflict has occurred, and True is returned. If no such conflicts arise, False is returned.
The tricky part is the following expression:

abs(state[i] - nextX) in (0, nextY - i)

It is true if the horizontal distance between the next queen and the previous one under consideration is
either zero (same column) or equal to the vertical distance (on a diagonal). Otherwise, it is false.

The Base Case
The Eight Queens problem can be a bit tricky to implement, but with generators it isn’t so bad. If you aren’t
used to recursion, I wouldn’t expect you to come up with this solution by yourself, though. Note also that this
solution isn’t particularly efficient, so with a very large number of queens, it might be a bit slow.

Let’s begin with the base case: the last queen. What would you want her to do? Let’s say you want to find
all possible solutions. In that case, you would expect her to produce (generate) all the positions she could
occupy (possibly none) given the positions of the others. You can sketch this out directly.

def queens(num, state):
 if len(state) == num-1:
 for pos in range(num):
 if not conflict(state, pos):
 yield pos

In human-speak, this means, “If all queens but one have been placed, go through all possible positions for
the last one, and return the positions that don’t give rise to any conflicts.” The num parameter is the number
of queens in total, and the state parameter is the tuple of positions for the previous queens. For example,
let’s say you have four queens and that the first three have been given the positions 1, 3, and 0, respectively,
as shown in Figure 9-1. (Pay no attention to the white queen at this point.)

Chapter 9 ■ Magic Methods, Properties, and Iterators

189

As you can see in the figure, each queen gets a (horizontal) row, and the queens’ positions are numbered
across the top (beginning with zero, as is normal in Python).

>>> list(queens(4, (1, 3, 0)))
[2]

It works like a charm. Using list simply forces the generator to yield all of its values. In this case, only one
position qualifies. The white queen has been put in this position in Figure 9-1. (Note that color has no
special significance and is not part of the program.)

The Recursive Case
Now let’s turn to the recursive part of the solution. When you have your base case covered, the recursive case
may correctly assume (by induction) that all results from lower levels (the queens with higher numbers) are
correct. So what you need to do is add an else clause to the if statement in the previous implementation of
the queens function.

What results do you expect from the recursive call? You want the positions of all the lower queens, right?
Let’s say they are returned as a tuple. In that case, you probably need to change your base case to return a
tuple as well (of length one)—but I get to that later.

Figure 9-1.  Placing four queens on a 4 × 4 board

Chapter 9 ■ Magic Methods, Properties, and Iterators

190

So, you’re supplied with one tuple of positions from “above,” and for each legal position of the current
queen, you are supplied with a tuple of positions from “below.” All you need to do to keep things flowing is to
yield the following result with your own position added to the front:

...
else:
 for pos in range(num):
 if not conflict(state, pos):
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

The for pos and if not conflict parts of this are identical to what you had before, so you can rewrite this
a bit to simplify the code. Let’s add some default arguments as well.

def queens(num=8, state=()):
 for pos in range(num):
 if not conflict(state, pos):
 if len(state) == num-1:
 yield (pos,)
 else:
 for result in queens(num, state + (pos,)):
 yield (pos,) + result

If you find the code hard to understand, you might find it helpful to formulate what it does in your own
words. (And you do remember that the comma in (pos,) is necessary to make it a tuple, and not simply a
parenthesized value, right?)

The queens generator gives you all the solutions (that is, all the legal ways of placing the queens).

>>> list(queens(3))
[]
>>> list(queens(4))
[(1, 3, 0, 2), (2, 0, 3, 1)]
>>> for solution in queens(8):
... print solution
...
(0, 4, 7, 5, 2, 6, 1, 3)
(0, 5, 7, 2, 6, 3, 1, 4)
...
(7, 2, 0, 5, 1, 4, 6, 3)
(7, 3, 0, 2, 5, 1, 6, 4)
>>>

If you run queens with eight queens, you see a lot of solutions flashing by. Let’s find out how many.

>>> len(list(queens(8)))
92

Chapter 9 ■ Magic Methods, Properties, and Iterators

191

Wrapping It Up
Before leaving the queens, let’s make the output a bit more understandable. Clear output is always a good
thing because it makes it easier to spot bugs, among other things.

def prettyprint(solution):
 def line(pos, length=len(solution)):
 return '. ' * (pos) + 'X ' + '. ' * (length-pos-1)
 for pos in solution:
 print(line(pos))

Note that I’ve made a little helper function inside prettyprint. I put it there because I assumed I wouldn’t
need it anywhere outside. In the following, I print out a random solution to satisfy myself that it is correct.

>>> import random
>>> prettyprint(random.choice(list(queens(8))))
. X . .
. X
. X .
X
. . . X
. X
. . . . X . . .
. . X

This “drawing” corresponds to the diagram in Figure 9-2.

Chapter 9 ■ Magic Methods, Properties, and Iterators

192

A Quick Summary
You’ve seen a lot of magic here. Let’s take stock.

New-style versus old-style classes: The way classes work in Python is changing.
Recent pre-3.0 versions of Python had two sorts of classes, with the old-style ones
quickly going out of fashion. The new-style classes were introduced in version
2.2, and they provide several extra features (for example, they work with super
and property, while old-style classes do not). To create a new-style class, you
must subclass object, either directly or indirectly, or set the __metaclass__
property.

Magic methods: Several special methods (with names beginning and ending
with double underscores) exist in Python. These methods differ quite a bit in
function, but most of them are called automatically by Python under certain
circumstances. (For example, __init__ is called after object creation.)

Constructors: These are common to many object-oriented languages, and
you’ll probably implement one for almost every class you write. Constructors are
named init and are automatically called immediately after an object is created.

Figure 9-2.  One of many possible solutions to the Eight Queens problem

Chapter 9 ■ Magic Methods, Properties, and Iterators

193

Overriding: A class can override methods (or any other attributes) defined
in its superclasses simply by implementing the methods. If the new method
needs to call the overridden version, it can either call the unbound version from
the superclass directly (old-style classes) or use the super function (new-style
classes).

Sequences and mappings: Creating a sequence or mapping of your own
requires implementing all the methods of the sequence and mapping protocols,
including such magic methods as getitem and __setitem__. By subclassing list
(or UserList) and dict (or UserDict), you can save a lot of work.

Iterators: An iterator is simply an object that has a __next__ method. Iterators
can be used to iterate over a set of values. When there are no more values, the
next method should raise a StopIteration exception. Iterable objects have an
__iter__ method, which returns an iterator, and can be used in for loops, just
like sequences. Often, an iterator is also iterable; that is, it has an __iter__
method that returns the iterator itself.

Generators: A generator-function (or method) is a function (or method) that
contains the keyword yield. When called, the generator-function returns a
generator, which is a special type of iterator. You can interact with an active
generator from the outside by using the methods send, throw, and close.

Eight Queens: The Eight Queens problem is well known in computer science
and lends itself easily to implementation with generators. The goal is to position
eight queens on a chessboard so that none of the queens is in a position from
which she can attack any of the others.

New Functions in This Chapter

Function Description

iter(obj) Extracts an iterator from an iterable object

next(it) Advances an iterator and returns its next element

property(fget, fset, fdel, doc) Returns a property; all arguments are optional

super(class, obj) Returns a bound instance of class’s superclass

Note that iter and super may be called with other parameters than those described here. For more
information, consult the standard Python documentation.

What Now?
Now you know most of the Python language. So why are there still so many chapters left? Well, there is still
a lot to learn, much of it about how Python can connect to the external world in various ways. And then we
have testing, extending, packaging, and the projects, so we’re not done yet—not by far.

195© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_10

CHAPTER 10

Batteries Included

You now know most of the basic Python language. While the core language is powerful in itself, Python gives
you more tools to play with. A standard installation includes a set of modules called the standard library.
You have already seen some of them (math and cmath, for example), but there are many more. This chapter
shows you a bit about how modules work and how to explore them and learn what they have to offer. Then
the chapter offers an overview of the standard library, focusing on a few selected useful modules.

Modules
You already know about making your own programs (or scripts) and executing them. You have also seen how
you can fetch functions into your programs from external modules using import.

>>> import math
>>> math.sin(0)
0.0

Let’s take a look at how you can write your own modules.

Modules Are Programs
Any Python program can be imported as a module. Let’s say you have written the program in Listing 10-1
and stored it in a file called hello.py. The name of the file, except for the .py extension, becomes the name
of your module.

Listing 10-1.  A Simple Module

hello.py
print("Hello, world!")

Where you save it is also important; in the next section you’ll learn more about that, but for now let’s say you
save it in the directory C:\python (Windows) or ~/python (UNIX/macOS).

Then you can tell your interpreter where to look for the module by executing the following (using the
Windows directory):

>>> import sys
>>> sys.path.append('C:/python')

Chapter 10 ■ Batteries Included

196

■■ Tip I n UNIX, you cannot simply append the string '~/python' to sys.path. You must use the full path
(such as '/home/yourusername/python') or, if you want to automate it, use sys.path.expanduser('~/python').

This simply tells the interpreter that it should look for modules in the directory C:\python in addition to the
places it would normally look. After having done this, you can import your module (which is stored in the file
C:\python\hello.py, remember?).

>>> import hello
Hello, world!

■■ Note  When you import a module, you may notice the appearance of a new directory, called __pycache__,
alongside your source file. (In older versions, you’ll see files with the suffix .pyc instead.) This directory contains
files with processed files that Python can handle more efficiently. If you import the same module later, Python
will import these files and then your .py file, unless the .py file has changed; in that case, a new processed file
is generated. Deleting the __pycache__ directory does no harm—a new one is created as needed.

As you can see, the code in the module is executed when you import it. However, if you try to import it again,
nothing happens.

>>> import hello
>>>

Why doesn’t it work this time? Because modules aren’t really meant to do things (such as printing text) when
they’re imported. They are mostly meant to define things, such as variables, functions, classes, and so on.
And because you need to define things only once, importing a module several times has the same effect as
importing it once.

WHY ONLY ONCE?

The import-only-once behavior is a substantial optimization in most cases, and it can be very important
in one special case: if two modules import each other.

In many cases, you may write two modules that need to access functions and classes from each other
to function properly. For example, you may have created two modules—clientdb and billing—
containing code for a client database and a billing system, respectively. Your client database may
contain calls to your billing system (for example, automatically sending a bill to a client every month),
while the billing system probably needs to access functionality from your client database to do the
billing correctly.

If each module could be imported several times, you would end up with a problem here. The module
clientdb would import billing, which again imports clientdb, which … you get the picture. You end
up with an endless loop of imports (infinite recursion, remember?). However, because nothing happens
the second time you import the module, the loop is broken.

Chapter 10 ■ Batteries Included

197

If you insist on reloading your module, you can use the reload function from the importlib module.
It takes a single argument (the module you want to reload) and returns the reloaded module. This may
be useful if you have made changes to your module and want those changes reflected in your program
while it is running. To reload the simple hello module (containing only a print statement), I would use
the following:

>>> import importlib
>>> hello = importlib.reload(hello)
Hello, world!

Here, I assume that hello has already been imported (once). By assigning the result of reload to
hello, I have replaced the previous version with the reloaded one. As you can see from the printed
greeting, I am really importing the module here.

If you’ve created an object x by instantiating the class Foo from the module bar and you then reload
bar, the object x refers to will not be re-created in any way. x will still be an instance of the old version
of Foo (from the old version of bar). If, instead, you want x to be based on the new Foo from the
reloaded module, you will need to create it anew.

Modules Are Used to Define Things
So modules are executed the first time they are imported into your program. That seems sort of useful, but
not very. What makes them worthwhile is that they (just like classes) keep their scope around afterward.
That means that any classes or functions you define, and any variables you assign a value to, become
attributes of the module. This may seem complicated, but in practice it is very simple.

Defining a Function in a Module
Let’s say you have written a module like the one in Listing 10-2 and stored it in a file called hello2.py. Also
assume that you’ve put it in a place where the Python interpreter can find it, either using the sys.path trick
from the previous section or using the more conventional methods from the later section “Making Your
Modules Available.”

■■ Tip  If you make a program (which is meant to be executed and not really used as a module) available in
the same manner as other modules, you can actually execute it using the -m switch to the Python interpreter.
Running the command python -m progname args will run the program progname with the command-line
arguments args, provided that the file progname.py (note the suffix) is installed along with your other modules
(that is, provided you have imported progname).

Listing 10-2.  A Simple Module Containing a Function

hello2.py
def hello():
 print("Hello, world!")

Chapter 10 ■ Batteries Included

198

You can then import it like this:

>>> import hello2

The module is then executed, which means that the function hello is defined in the scope of the module, so
you can access the function like this:

>>> hello2.hello()
Hello, world!

Any name defined in the global scope of the module will be available in the same manner. Why would you
want to do this? Why not just define everything in your main program?

The primary reason is code reuse. If you put your code in a module, you can use it in more than one of
your programs, which means that if you write a good client database and put it in a module called clientdb,
you can use it when billing, when sending out spam (though I hope you won’t), and in any program that
needs access to your client data. If you hadn’t put this in a separate module, you would need to rewrite the
code in each one of these programs. So, remember, to make your code reusable, make it modular! (And, yes,
this is definitely related to abstraction.)

Adding Test Code in a Module
Modules are used to define things such as functions and classes, but every once in a while (quite often,
actually), it is useful to add some test code that checks whether things work as they should. For example, if
you wanted to make sure that the hello function worked, you might rewrite the module hello2 into a new
one, hello3, defined in Listing 10-3.

Listing 10-3.  A Simple Module with Some Problematic Test Code

hello3.py
def hello():
 print("Hello, world!")

A test:
hello()

This seems reasonable—if you run this as a normal program, you will see that it works. However, if you
import it as a module, to use the hello function in another program, the test code is executed, as in the first
hello module in this chapter.

>>> import hello3
Hello, world!
>>> hello3.hello()
Hello, world!

This is not what you want. The key to avoiding this behavior is checking whether the module is run as a
program on its own or imported into another program. To do that, you need the variable __name__.

>>> __name__
'__main__'
>>> hello3.__name__
'hello3'

Chapter 10 ■ Batteries Included

199

As you can see, in the “main program” (including the interactive prompt of the interpreter), the variable
__name__ has the value '__main__'. In an imported module, it is set to the name of that module. Therefore,
you can make your module’s test code more well behaved by putting in an if statement, as shown in Listing 10-4.

Listing 10-4.  A Module with Conditional Test Code

hello4.py

def hello():
 print("Hello, world!")

def test():
 hello()

if __name__ == '__main__': test()

If you run this as a program, the hello function is executed; if you import it, it behaves like a normal module.

>>> import hello4
>>> hello4.hello()
Hello, world!

As you can see, I’ve wrapped up the test code in a function called test. I could have put the code directly
into the if statement; however, by putting it in a separate test function, you can test the module even if you
have imported it into another program.

>>> hello4.test()
Hello, world!

■■ Note  If you write more thorough test code, it’s probably a good idea to put it in a separate program. See
Chapter 16 for more on writing tests.

Making Your Modules Available
In the previous examples, I have altered sys.path, which contains a list of directories (as strings) in which
the interpreter should look for modules. However, you don’t want to do this in general. The ideal case would
be for sys.path to contain the correct directory (the one containing your module) to begin with. There
are two ways of doing this: put your module in the right place or tell the interpreter where to look. The
following sections discuss these two solutions. If you wish to make your module easily available to others,
that’s another matter. Python packaging has gone through a phase of increasing complexity and diversity;
it is now being reined in and streamlined by the Python Packaging Authority, but there is still a lot to digest.
Rather than diving into this challenging subject, I refer you to the Python Packaging User Guide, available at
packaging.python.org.

http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 10 ■ Batteries Included

200

Putting Your Module in the Right Place
Putting your module in the right place—or, rather, a right place—is quite easy. It’s just a matter of finding out
where the Python interpreter looks for modules and then putting your file there. If the Python interpreter on
the machine you’re working on has been installed by an administrator and you do not have administrator
permissions, you may not be able to save your module in any of the directories used by Python. You will then
need to use the alternative solution, described in the next section: tell the interpreter where to look.

As you may remember, the list of directories (the so-called search path) can be found in the path
variable in the sys module.

>>> import sys, pprint
>>> pprint.pprint(sys.path)
['C:\\Python35\\Lib\\idlelib',
 'C:\\Python35',
 'C:\\Python35\\DLLs',
 'C:\\Python35\\lib',
 'C:\\Python35\\lib\\plat-win',
 'C:\\Python35\\lib\\lib-tk',
 'C:\\Python35\\lib\\site-packages']

■■ Tip  If you have a data structure that is too big to fit on one line, you can use the pprint function from the
pprint module instead of the normal print statement. pprint is a pretty-printing function, which makes a
more intelligent printout.

You may not get the exact same result, of course. The point is that each of these strings provides a place to
put modules if you want your interpreter to find them. Even though all these will work, the site-packages
directory is the best choice because it’s meant for this sort of thing. Look through your sys.path and find
your site-packages directory, and save the module from Listing 10-4 in it, but give it another name, such as
another_hello.py. Then try the following:

>>> import another_hello
>>> another_hello.hello()
Hello, world!

As long as your module is located in a place like site-packages, all your programs will be able to import it.

Telling the Interpreter Where to Look
Putting your module in the correct place might not be the right solution for you for a number of reasons.

•	 You don’t want to clutter the Python interpreter’s directories with your own modules.

•	 You don’t have permission to save files in the Python interpreter’s directories.

•	 You would like to keep your modules somewhere else.

The bottom line is that if you place your modules somewhere else, you must tell the interpreter where to
look. As you saw earlier, one way of doing this is to modify sys.path directly, but that is not a common
way to do it. The standard method is to include your module directory (or directories) in the environment
variable PYTHONPATH.

Depending on which operating system you are using, the contents of PYTHONPATH varies (see the sidebar
“Environment Variables”), but basically it’s just like sys.path—a list of directories.

Chapter 10 ■ Batteries Included

201

ENVIRONMENT VARIABLES

Environment variables are not part of the Python interpreter—they’re part of your operating system.
Basically, they are like Python variables, but they are set outside the Python interpreter. Let’s say you’re
using the bash shell, which is available on most UNIX-like systems, macOS, and recent versions of
Windows. You could then execute the following statement to append ~/python to your PYTHONPATH
environment variable:

export PYTHONPATH=$PYTHONPATH:~/python

If you’d like the statement to be executed for all shells you start, you could add it to the .bashrc file in
your home directory. For instructions on editing environment variables in other ways, you should consult
your system documentation.

For an alternative to using the PYTHONPATH environment variable, you might want to consider so-called
path configuration files. These are files with the extension .pth, located in certain particular directories and
containing names of directories that should be added to sys.path. For details, please consult the standard
library documentation for the site module.

Packages
To structure your modules, you can group them into packages. A package is basically just another type of
module. The interesting thing about them is that they can contain other modules. While a module is stored
in a file (with the file name extension .py), a package is a directory. To make Python treat it as a package,
it must contain a file named __init__.py. The contents of this file will be the contents of the package, if
you import it as if it were a plain module. For example, if you had a package named constants and the file
constants/__init__.py contained the statement PI = 3.14, you would be able to do the following:

import constants
print(constants.PI)

To put modules inside a package, simply put the module files inside the package directory. You can also nest
packages inside other packages. For example, if you wanted a package called drawing, which contained one
module called shapes and one called colors, you would need the files and directories (UNIX pathnames)
shown in Table 10-1.

Table 10-1.  A Simple Package Layout

File/Directory Description

~/python/ Directory in PYTHONPATH

~/python/drawing/ Package directory (drawing package)

~/python/drawing/__init__.py Package code (drawing module)

~/python/drawing/colors.py colors module

~/python/drawing/shapes.py shapes module

Chapter 10 ■ Batteries Included

202

With this setup, the following statements are all legal:

import drawing # (1) Imports the drawing package
import drawing.colors # (2) Imports the colors module
from drawing import shapes # (3) Imports the shapes module

After the first statement, the contents of the __init__.py file in drawing would be available; the shapes and
colors modules, however, would not be. After the second statement, the colors module would be available,
but only under its full name, drawing.colors. After the third statement, the shapes module would be
available, under its short name (that is, simply shapes). Note that these statements are just examples. There
is no need, for example, to import the package itself before importing one of its modules as I have done here.
The second statement could very well be executed on its own, as could the third.

Exploring Modules
Before I describe some of the standard library modules, I’ll show you how to explore modules on your
own. This is a valuable skill because you will encounter many useful modules in your career as a Python
programmer, and I couldn’t possibly cover all of them here. The current standard library is large enough to
warrant books all by itself (and such books have been written)—and it’s growing. New modules are added
with each release, and often some of the modules undergo slight changes and improvements. Also, you
will most certainly find several useful modules on the Web, and being able to understand them quickly and
easily will make your programming much more enjoyable.

What’s in a Module?
The most direct way of probing a module is to investigate it in the Python interpreter. The first thing you
need to do is to import it, of course. Let’s say you’ve heard rumors about a standard module called copy.

>>> import copy

No exceptions are raised—so it exists. But what does it do? And what does it contain?

Using dir
To find out what a module contains, you can use the dir function, which lists all the attributes of
an object (and therefore all functions, classes, variables, and so on, of a module). If you print out
dir(copy), you get a long list of names. (Go ahead, try it.) Several of these names begin with an
underscore—a hint (by convention) that they aren’t meant to be used outside the module. So let’s filter
them out with a little list comprehension (check the section on list comprehension in Chapter 5 if you
don’t remember how this works).

>>> [n for n in dir(copy) if not n.startswith('_')]
['Error', 'PyStringMap', 'copy', 'deepcopy', 'dispatch_table', 'error', 'name', 't', 'weakref']

The result consists of all the names from dir(copy) that don’t have an underscore as their first letter and
should be less confusing than a full listing.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 10 ■ Batteries Included

203

The __all__ Variable
What I did with the little list comprehension in the previous section was to make a guess about what I was
supposed to see in the copy module. However, you can get the correct answer directly from the module itself.
In the full dir(copy) list, you may have noticed the name __all__. This is a variable containing a list similar
to the one I created with list comprehension, except that this list has been set in the module itself. Let’s see
what it contains:

>>> copy.__all__
['Error', 'copy', 'deepcopy']

My guess wasn’t all that bad. I got only a few extra names that weren’t intended for my use. But where did
this __all__ list come from, and why is it really there? The first question is easy to answer. It was set in the
copy module, like this (copied directly from copy.py):

__all__ = ["Error", "copy", "deepcopy"]

So why is it there? It defines the public interface of the module. More specifically, it tells the interpreter what
it means to import all the names from this module. So if you use this:

from copy import *

you get only the four functions listed in the __all__ variable. To import PyStringMap, for example, you
would need to be explicit, either by importing copy and using copy.PyStringMap or by using from copy
import PyStringMap.

Setting __all__ like this is a useful technique when writing modules, too. Because you may have a lot
of variables, functions, and classes in your module that other programs might not need or want, it is only
polite to filter them out. If you don’t set __all__, the names exported in a starred import defaults to all global
names in the module that don’t begin with an underscore.

Getting Help with help
Until now, you’ve been using your ingenuity and knowledge of various Python functions and special
attributes to explore the copy module. The interactive interpreter is a powerful tool for this sort of
exploration because your mastery of the language is the only limit to how deeply you can probe a module.
However, there is one standard function that gives you all the information you would normally need. That
function is called help. Let’s try it on the copy function:

>>> help(copy.copy)
Help on function copy in module copy:

copy(x)
 Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

This tells you that __copy__ takes a single argument x and that it is a “shallow copy operation.” But it also
mentions the module’s __doc__ string. What’s that? You may remember that I mentioned docstrings in
Chapter 6. A docstring is simply a string you write at the beginning of a function to document it. That string
may then be referred to by the function attribute __doc__. As you may understand from the preceding help
text, modules may also have docstrings (they are written at the beginning of the module), as may classes
(they are written at the beginning of the class).

http://dx.doi.org/10.1007/978-1-4842-0028-5_6

Chapter 10 ■ Batteries Included

204

Actually, the preceding help text was extracted from the copy function’s docstring:

>>> print(copy.copy.__doc__)
Shallow copy operation on arbitrary Python objects.

 See the module's __doc__ string for more info.

The advantage of using help over just examining the docstring directly like this is that you get more
information, such as the function signature (that is, the arguments it takes). Try to call help on the module
itself and see what you get. It prints out a lot of information, including a thorough discussion of the
difference between copy and deepcopy (essentially that deepcopy(x) makes copies of the values found in x
as attributes and so on, while copy(x) just copies x, binding the attributes of the copy to the same values as
those of x).

Documentation
A natural source for information about a module is, of course, its documentation. I’ve postponed the
discussion of documentation because it’s often much quicker to just examine the module a bit yourself first.
For example, you may wonder, “What were the arguments to range again?” Instead of searching through a
Python book or the standard Python documentation for a description of range, you can just check it directly.

>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object

Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).

You now have a precise description of the range function, and because you probably had the Python
interpreter running already (wondering about functions like this usually happens while you are
programming), accessing this information took just a couple of seconds.

However, not every module and every function has a good docstring (although they should), and
sometimes you may need a more thorough description of how things work. Most modules you download
from the Web have some associated documentation. Some of the most useful documentation for learning
to program in Python is the Python Library Reference, which describes all of the modules in the standard
library. If I want to look up some fact about Python, nine times out of ten, I find it there. The library reference
is available for online browsing (at https://docs.python.org/library) or for download, as are several
other standard documents (such as the Python Tutorial and the Python Language Reference). All of the
documentation is available from the Python web site at https://docs.python.org.

Use the Source
The exploration techniques I’ve discussed so far will probably be enough for most cases. But those of you
who wish to truly understand the Python language may want to know things about a module that can’t be
answered without actually reading the source code. Reading source code is, in fact, one of the best ways to
learn Python—besides coding yourself.

http://python.org/doc/lib)
http://python.org/doc

Chapter 10 ■ Batteries Included

205

Doing the actual reading shouldn’t be much of a problem, but where is the source? Let’s say you wanted
to read the source code for the standard module copy. Where would you find it? One solution would be
to examine sys.path again and actually look for it yourself, just like the interpreter does. A faster way is to
examine the module’s __file__ property.

>>> print(copy.__file__)
C:\Python35\lib\copy.py

There it is! You can open the copy.py file in your code editor (for example, IDLE) and start examining how it
works. If the file name ends with .pyc, just use the corresponding file whose name ends with .py.

■■ Caution  When opening a standard library file in a text editor, you run the risk of accidentally modifying it.
Doing so might break it, so when you close the file, make sure that you don’t save any changes you might have made.

Note that some modules don’t have any Python source you can read. They may be built into the interpreter
(such as the sys module), or they may be written in the C programming language.1 (See Chapter 17 for more
information on extending Python using C.)

The Standard Library: A Few Favorites
The phrase “batteries included” with reference to Python was originally coined by Frank Stajano and
refers to Python’s copious standard library. When you install Python, you get a lot of useful modules (the
“batteries”) for “free.” Because there are so many ways of getting more information about these modules (as
explained in the first part of this chapter), I won’t include a full reference here (which would take up far too
much space anyway); instead, I’ll describe a few of my favorite standard modules to whet your appetite for
exploration. You’ll encounter more standard modules in the project chapters (Chapters 20 through 29). The
module descriptions are not complete but highlight some of the interesting features of each module.

sys
The sys module gives you access to variables and functions that are closely linked to the Python interpreter.
Some of these are shown in Table 10-2.

Table 10-2.  Some Important Functions and Variables in the sys Module

Function/Variable Description

argv The command-line arguments, including the script name

exit([arg]) Exits the current program, optionally with a given return value or error message

modules A dictionary mapping module names to loaded modules

path A list of directory names where modules can be found

platform A platform identifier such as sunos5 or win32

stdin Standard input stream—a file-like object

stdout Standard output stream—a file-like object

stderr Standard error stream—a file-like object

1If the module was written in C, the C source code should be available.

http://dx.doi.org/10.1007/978-1-4842-0028-5_17
http://dx.doi.org/10.1007/978-1-4842-0028-5_20
http://dx.doi.org/10.1007/978-1-4842-0028-5_29

Chapter 10 ■ Batteries Included

206

The variable sys.argv contains the arguments passed to the Python interpreter, including the script name.
The function sys.exit exits the current program. (If called within a try/finally block, discussed in

Chapter 8, the finally clause is still executed.) You can supply an integer to indicate whether the program
succeeded—a UNIX convention. You’ll probably be fine in most cases if you rely on the default (which is
zero, indicating success). Alternatively, you can supply a string, which is used as an error message and can
be very useful for a user trying to figure out why the program halted; then, the program exits with that error
message and a code indicating failure.

The mapping sys.modules maps module names to actual modules. It applies to only currently
imported modules.

The module variable sys.path was discussed earlier in this chapter. It’s a list of strings, in which each
string is the name of a directory where the interpreter will look for modules when an import statement is
executed.

The module variable sys.platform (a string) is simply the name of the “platform” on which the
interpreter is running. This may be a name indicating an operating system (such as sunos5 or win32), or it
may indicate some other kind of platform, such as a Java Virtual Machine (for example, java1.4.0) if you’re
running Jython.

The module variables sys.stdin, sys.stdout, and sys.stderr are file-like stream objects. They
represent the standard UNIX concepts of standard input, standard output, and standard error. To put it
simply, sys.stdin is where Python gets its input (used in input, for example), and sys.stdout is where it
prints. You learn more about files (and these three streams) in Chapter 11.

As an example, consider the problem of using printing arguments in reverse order. When you call a
Python script from the command line, you may add some arguments after it—the so-called command-line
arguments. These will then be placed in the list sys.argv, with the name of the Python script as sys.argv[0].
Printing these out in reverse order is pretty simple, as you can see in Listing 10-5.

Listing 10-5.  Reversing and Printing Command-Line Arguments

reverseargs.py
import sys
args = sys.argv[1:]
args.reverse()
print(' '.join(args))

As you can see, I make a copy of sys.argv. You can modify the original, but in general, it’s safer not to
because other parts of the program may also rely on sys.argv containing the original arguments. Notice
also that I skip the first element of sys.argv—the name of the script. I reverse the list with args.reverse(),
but I can’t print the result of that operation. It is an in-place modification that returns None. An alternative
approach would be the following:

print(' '.join(reversed(sys.argv[1:])))

Finally, to make the output prettier, I use the join string method. Let’s try the result (assuming bash of some
other shell).

$ python reverseargs.py this is a test
test a is this

http://dx.doi.org/10.1007/978-1-4842-0028-5_8
http://dx.doi.org/10.1007/978-1-4842-0028-5_11

Chapter 10 ■ Batteries Included

207

os
The os module gives you access to several operating system services. The os module is extensive; only a
few of the most useful functions and variables are described in Table 10-3. In addition to these, os and its
submodule os.path contain several functions to examine, construct, and remove directories and files, as
well as functions for manipulating paths (for example, os.path.split and os.path.join let you ignore
os.pathsep most of the time). For more information about this functionality, see the standard library
documentation. There you can also find a description of the pathlib module, which provides an object-
oriented interface to path manipulation.

Table 10-3.  Some Important Functions and Variables in the os Module

Function/Variable Description

environ Mapping with environment variables

system(command) Executes an operating system command in a subshell

sep Separator used in paths

pathsep Separator to separate paths

linesep Line separator ('\n', '\r', or '\r\n')

urandom(n) Returns n bytes of cryptographically strong random data

The mapping os.environ contains environment variables described earlier in this chapter. For example, to
access the environment variable PYTHONPATH, you would use the expression os.environ['PYTHONPATH'].
This mapping can also be used to change environment variables, although not all platforms support this.

The function os.system is used to run external programs. There are other functions for executing
external programs, including execv, which exits the Python interpreter, yielding control to the executed
program, and popen, which creates a file-like connection to the program.

For more information about these functions, consult the standard library documentation.

■■ Tip  Check out the subprocess module. It collects the functionality of the os.system, execv, and popen
functions.

The module variable os.sep is a separator used in pathnames. The standard separator in UNIX (and the
macOS command-line version of Python) is /. The standard in Windows is \\ (the Python syntax for a
single backslash), and in the old macOS, it was :. (On some platforms, os.altsep contains an alternate path
separator, such as / in Windows.)

You use os.pathsep when grouping several paths, as in PYTHONPATH. The pathsep is used to separate the
pathnames: : in UNIX/macOS and ; in Windows.

The module variable os.linesep is the line separator string used in text files. In UNIX/OS X, this is a single
newline character (\n), and in Windows, it’s the combination of a carriage return and a newline (\r\n).

The urandom function uses a system-dependent source of “real” (or, at least, cryptographically strong)
randomness. If your platform doesn’t support it, you’ll get a NotImplementedError.

Chapter 10 ■ Batteries Included

208

As an example, consider the problem of starting a web browser. The system command can be used to
execute any external program, which is very useful in environments such as UNIX where you can execute
programs (or commands) from the command line to list the contents of a directory, send email, and so on.
But it can be useful for starting programs with graphical user interfaces, too—such as a web browser. In
UNIX, you can do the following (provided that you have a browser at /usr/bin/firefox):

os.system('/usr/bin/firefox')

Here’s a Windows version (again, use the path of a browser you have installed):

os.system(r'C:\"Program Files (x86)"\"Mozilla Firefox"\firefox.exe')

Note that I’ve been careful about enclosing Program Files and Mozilla Firefox in quotes; otherwise,
the underlying shell balks at the whitespace. (This may be important for directories in your PYTHONPATH as
well.) Note also that you must use backslashes here because the shell gets confused by forward slashes. If
you run this, you will notice that the browser tries to open a web site named Files"\Mozilla…—the part of
the command after the whitespace. Also, if you try to run this from IDLE, a DOS window appears, but the
browser doesn’t start until you close that DOS window. All in all, it’s not exactly ideal behavior.

Another function that suits the job better is the Windows-specific function os.startfile.

os.startfile(r'C:\Program Files (x86)\Mozilla Firefox\firefox.exe')

As you can see, os.startfile accepts a plain path, even if it contains whitespace (that is, don’t enclose
Program Files in quotes as in the os.system example).

Note that in Windows, your Python program keeps on running after the external program has been
started by os.system (or os.startfile); in UNIX, your Python program waits for the os.system command
to finish.

A BETTER SOLUTION: WEBBROWSER

The os.system function is useful for a lot of things, but for the specific task of launching a web browser,
there’s an even better solution: the webbrowser module. It contains a function called open, which lets
you automatically launch a web browser to open the given URL. For example, if you want your program
to open the Python web site in a web browser (either starting a new browser or using one that is already
running), you simply use this:

import webbrowser
webbrowser.open('http://www.python.org')

The page should pop up.

fileinput
You learn a lot about reading from and writing to files in Chapter 11, but here is a sneak preview. The
fileinput module enables you to easily iterate over all the lines in a series of text files. If you call your script
like this (assuming a UNIX command line):

$ python some_script.py file1.txt file2.txt file3.txt

http://dx.doi.org/10.1007/978-1-4842-0028-5_11

Chapter 10 ■ Batteries Included

209

you will be able to iterate over the lines of file1.txt through file3.txt in turn. You can also iterate over
lines supplied to standard input (sys.stdin, remember?), for example, in a UNIX pipe, using the standard
UNIX command cat.

$ cat file.txt | python some_script.py

If you use fileinput, calling your script with cat in a UNIX pipe works just as well as supplying the file
names as command-line arguments to your script. The most important functions of the fileinput module
are described in Table 10-4.

Table 10-4.  Some Important Functions in the fileinput Module

Function Description

input([files[, inplace[, backup]]) Facilitates iteration over lines in multiple input streams

filename() Returns the name of the current file

lineno() Returns the current (cumulative) line number

filelineno() Returns the line number within current file

isfirstline() Checks whether the current line is first in file

isstdin() Checks whether the last line was from sys.stdin

nextfile() Closes the current file and moves to the next

close() Closes the sequence

fileinput.input is the most important of the functions. It returns an object that you can iterate over in a
for loop. If you don’t want the default behavior (in which fileinput finds out which files to iterate over),
you can supply one or more file names to this function (as a sequence). You can also set the inplace
parameter to a true value (inplace=True) to enable in-place processing. For each line you access, you’ll
need to print out a replacement, which will be put back into the current input file. The optional backup
argument gives a file name extension to a backup file created from the original file when you do in-place
processing.

The function fileinput.filename returns the file name of the file you are currently in (that is, the file
that contains the line you are currently processing).

The function fileinput.lineno returns the number of the current line. This count is cumulative so that
when you are finished with one file and begin processing the next, the line number is not reset but starts at
one more than the last line number in the previous file.

The function fileinput.filelineno returns the number of the current line within the current file. Each
time you are finished with one file and begin processing the next, the file line number is reset and restarts at 1.

The function fileinput.isfirstline returns a true value if the current line is the first line of the
current file; otherwise, it returns a false value.

The function fileinput.isstdin returns a true value if the current file is sys.stdin; otherwise, it
returns false.

The function fileinput.nextfile closes the current file and skips to the next one. The lines you skip
do not count against the line count. This can be useful if you know that you are finished with the current
file—for example, if each file contains words in sorted order and you are looking for a specific word. If you
have passed the word’s position in the sorted order, you can safely skip to the next file.

The function fileinput.close closes the entire chain of files and finishes the iteration.

Chapter 10 ■ Batteries Included

210

As an example of using fileinput, let’s say you have written a Python script and you want to number
the lines. Because you want the program to keep working after you’ve done this, you must add the line
numbers in comments to the right of each line. To line them up, you can use string formatting. Let’s allow
each program line to get 40 characters maximum and add the comment after that. The program in Listing
10-6 shows a simple way of doing this with fileinput and the inplace parameter.

Listing 10-6.  Adding Line Numbers to a Python Script

numberlines.py

import fileinput

for line in fileinput.input(inplace=True):
 line = line.rstrip()
 num = fileinput.lineno()
 print('{:<50} # {:2d}'.format(line, num))

If you run this program on itself, like this:

$ python numberlines.py numberlines.py

you end up with the program in Listing 10-7. Note that the program itself has been modified and that if
you run it like this several times, you will have multiple numbers on each line. Recall that rstrip is a string
method that returns a copy of a string, where all the whitespace on the right has been removed (see the
section “String Methods” in Chapter 3 and Table B-6 in Appendix B).

Listing 10-7.  The Line Numbering Program with Line Numbers Added

numberlines.py # 1
 # 2
import fileinput # 3
 # 4
for line in fileinput.input(inplace=True): # 5
 line = line.rstrip() # 6
 num = fileinput.lineno() # 7
 print('{:<50} # {:2d}'.format(line, num)) # 8

■■ Caution  Be careful about using the inplace parameter—it’s an easy way to ruin a file. You should test
your program carefully without setting inplace (this will simply print out the result), making sure the program
works before you let it modify your files.

For another example using fileinput, see the section about the random module, later in this chapter.

Sets, Heaps, and Deques
There are many useful data structures around, and Python supports some of the more common ones. Some
of these, such as dictionaries (or hash tables) and lists (or dynamic arrays), are integral to the language.
Others, although somewhat more peripheral, can still come in handy sometimes.

http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 10 ■ Batteries Included

211

Sets
A long time ago, sets were implemented by the Set class in the sets module. Although you may come upon
Set instances in existing code, there is really very little reason to use them yourself, unless you want to be
backward-compatible. In recent versions, sets are implemented by the built-in set class. This means that
you don’t need to import the sets module—you can just create sets directly.

>>> set(range(10))
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Sets are constructed from a sequence (or some other iterable object), or specified explicitly with curly
braces. Note that you can’t specify an empty set with braces, as you then end up with an empty dictionary.

>>> type({})
<class 'dict'>

Instead, you need to call set without arguments. The main use of sets is to determine membership, and thus
duplicates are ignored:

>>> {0, 1, 2, 3, 0, 1, 2, 3, 4, 5}
{0, 1, 2, 3, 4, 5}

Just as with dictionaries, the ordering of set elements is quite arbitrary and shouldn’t be relied on.

>>> {'fee', 'fie', 'foe'}
{'foe', 'fee', 'fie'}

In addition to checking for membership, you can perform various standard set operations (which you may
know from mathematics), such as union and intersection, either by using methods or by using the same
operations as you would for bit operations on integers (see Appendix B). For example, you can find the
union of two sets using either the union method of one of them or the bitwise or operator, |.

>>> a = {1, 2, 3}
>>> b = {2, 3, 4}
>>> a.union(b)
{1, 2, 3, 4}
>>> a | b
{1, 2, 3, 4}

Here are some other methods and their corresponding operators; the names should make it clear what they
mean:

>>> c = a & b
>>> c.issubset(a)
True
>>> c <= a
True
>>> c.issuperset(a)
False
>>> c >= a
False

Chapter 10 ■ Batteries Included

212

>>> a.intersection(b)
{2, 3}
>>> a & b
{2, 3}
>>> a.difference(b)
{1}
>>> a - b
{1}
>>> a.symmetric_difference(b)
{1, 4}
>>> a ^ b
{1, 4}
>>> a.copy()
{1, 2, 3}
>>> a.copy() is a
False

There are also various in-place operations, with corresponding methods, as well as the basic methods add
and remove. For more information, see the section about set types in the Python Library Reference.

■■ Tip  If you need a function for finding, say, the union of two sets, you can simply use the unbound version
of the union method, from the set type. This could be useful, for example, in concert with reduce.

>>> my_sets = []

>>> for i in range(10):

... my_sets.append(set(range(i, i+5)))

...

>>> reduce(set.union, my_sets)

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

Sets are mutable and may therefore not be used, for example, as keys in dictionaries. Another problem is
that sets themselves may contain only immutable (hashable) values and thus may not contain other sets.
Because sets of sets often occur in practice, this could be a problem. Luckily, there is the frozenset type,
which represents immutable (and, therefore, hashable) sets.

>>> a = set()
>>> b = set()
>>> a.add(b)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: set objects are unhashable
>>> a.add(frozenset(b))

The frozenset constructor creates a copy of the given set. It is useful whenever you want to use a set either
as a member of another set or as the key to a dictionary.

Chapter 10 ■ Batteries Included

213

Heaps
Another well-known data structure is the heap, a kind of priority queue. A priority queue lets you add
objects in an arbitrary order and at any time (possibly in between the adding) find (and possibly remove) the
smallest element. It does so much more efficiently than, say, using min on a list.

In fact, there is no separate heap type in Python—only a module with some heap-manipulating
functions. The module is called heapq (the q stands for queue), and it contains six functions (see Table 10-5),
the first four of which are directly related to heap manipulation. You must use a list as the heap object itself.

Table 10-5.  Some Important Functions in the fileinput Module

Function Description

heappush(heap, x) Pushes x onto the heap

heappop(heap) Pops off the smallest element in the heap

heapify(heap) Enforces the heap property on an arbitrary list

heapreplace(heap, x) Pops off the smallest element and pushes

x nlargest(n, iter) Returns the n largest elements of iter

nsmallest(n, iter) Returns the n smallest elements of iter

The heappush function is used to add an item to a heap. Note that you shouldn’t use it on any old list—only
one that has been built through the use of the various heap functions. The reason for this is that the order of
the elements is important (even though it may look a bit haphazard; the elements aren’t exactly sorted).

>>> from heapq import *
>>> from random import shuffle
>>> data = list(range(10))
>>> shuffle(data)
>>> heap = []
>>> for n in data:
... heappush(heap, n)
...
>>> heap
[0, 1, 3, 6, 2, 8, 4, 7, 9, 5]
>>> heappush(heap, 0.5)
>>> heap
[0, 0.5, 3, 6, 1, 8, 4, 7, 9, 5, 2]

The order of the elements isn’t as arbitrary as it seems. They aren’t in strictly sorted order, but there is one
guarantee made: the element at position i is always greater than the one in position i // 2 (or, conversely,
it’s smaller than the elements at positions 2 * i and 2 * i + 1). This is the basis for the underlying heap
algorithm. This is called the heap property.

The heappop function pops off the smallest element, which is always found at index 0, and makes sure
that the smallest of the remaining elements takes over this position (while preserving the heap property).
Even though popping the first element of a list isn’t terribly efficient in general, it’s not a problem here,
because heappop does some nifty shuffling behind the scenes.

Chapter 10 ■ Batteries Included

214

>>> heappop(heap)
0
>>> heappop(heap)
0.5
>>> heappop(heap)
1
>>> heap
[2, 5, 3, 6, 9, 8, 4, 7]

The heapify function takes an arbitrary list and makes it a legal heap (that is, it imposes the heap property)
through the least possible amount of shuffling. If you don’t build your heap from scratch with heappush, this
is the function to use before starting to use heappush and heappop.

>>> heap = [5, 8, 0, 3, 6, 7, 9, 1, 4, 2]
>>> heapify(heap)
>>> heap
[0, 1, 5, 3, 2, 7, 9, 8, 4, 6]

The heapreplace function is not quite as commonly used as the others. It pops the smallest element off
the heap and then pushes a new element onto it. This is a bit more efficient than a heappop followed by a
heappush.

>>> heapreplace(heap, 0.5)
0
>>> heap
[0.5, 1, 5, 3, 2, 7, 9, 8, 4, 6]
>>> heapreplace(heap, 10)
0.5
>>> heap
[1, 2, 5, 3, 6, 7, 9, 8, 4, 10]

The remaining two functions of the heapq module, nlargest(n, iter) and nsmallest(n, iter), are used
to find the n largest or smallest elements, respectively, of any iterable object iter. You could do this by using
sorting (for example, using the sorted function) and slicing, but the heap algorithm is faster and more
memory-efficient (and, not to mention, easier to use).

Deques (and Other Collections)
Double-ended queues, or deques, can be useful when you need to remove elements in the order in which they
were added. The deque type, along with several other collection types, is found in the collections module.

A deque is created from an iterable object (just like sets) and has several useful methods.

>>> from collections import deque
>>> q = deque(range(5))
>>> q.append(5)
>>> q.appendleft(6)
>>> q
deque([6, 0, 1, 2, 3, 4, 5])
>>> q.pop()
5
>>> q.popleft()

Chapter 10 ■ Batteries Included

215

6
>>> q.rotate(3)
>>> q
deque([2, 3, 4, 0, 1])
>>> q.rotate(-1)
>>> q
deque([3, 4, 0, 1, 2])

The deque is useful because it allows appending and popping efficiently at the beginning (to the left), which
you cannot do with lists. As a nice side effect, you can also rotate the elements (that is, shift them to the
right or left, wrapping around the ends) efficiently. Deque objects also have the extend and extendleft
methods, with extend working like the corresponding list method and extendleft working analogously to
appendleft. Note that the elements in the iterable object used in extendleft will appear in the deque in
reverse order.

time
The time module contains functions for, among other things, getting the current time, manipulating times
and dates, reading dates from strings, and formatting dates as strings. Dates can be represented as either a
real number (the seconds since 0 hours, January 1 in the “epoch,” a platform-dependent year; for UNIX, it’s
1970) or a tuple containing nine integers. These integers are explained in Table 10-6. For example, the tuple

(2008, 1, 21, 12, 2, 56, 0, 21, 0)

represents January 21, 2008, at 12:02:56, which is a Monday and the twenty-first day of the year (no daylight
savings).

Table 10-6.  The Fields of Python Date Tuples

Index Field Value

0 Year For example, 2000, 2001, and so on

1 Month In the range 1–12

2 Day In the range 1–31

3 Hour In the range 0–23

4 Minute In the range 0–59

5 Second In the range 0–61

6 Weekday In the range 0–6, where Monday is 0

7 Julian day In the range 1–366

8 Daylight savings 0, 1, or –1

The range for seconds is 0–61 to account for leap seconds and double-leap seconds. The daylight savings
number is a Boolean value (true or false), but if you use –1, mktime (a function that converts such a tuple to
a timestamp measured in seconds since the epoch) will probably get it right. Some of the most important
functions in the time module are described in Table 10-7.

Chapter 10 ■ Batteries Included

216

The function time.asctime formats the current time as a string, like this:

>>> time.asctime()
'Mon Jul 18 14:06:07 2016'

You can also supply a date tuple (such as those created by localtime) if you don’t want the current
time. (For more elaborate formatting, you can use the strftime function, described in the standard
documentation.)

The function time.localtime converts a real number (seconds since epoch) to a date tuple, local time.
If you want universal time, use gmtime instead.

The function time.mktime converts a date tuple to the time since epoch in seconds; it is the inverse of
localtime.

The function time.sleep makes the interpreter wait for a given number of seconds.
The function time.strptime converts a string of the format returned by asctime to a date tuple. (The

optional format argument follows the same rules as those for strftime; see the standard documentation.)
The function time.time returns the current (universal) time as seconds since the epoch. Even though

the epoch may vary from platform to platform, you can reliably time something by keeping the result of time
from before and after the event (such as a function call) and then computing the difference. For an example
of these functions, see the next section, which covers the random module.

The functions shown in Table 10-7 are just a selection of those available from the time module. Most of
the functions in this module perform tasks similar to or related to those described in this section. If you need
something not covered by the functions described here, take a look at the section about the time module in
the Python Library Reference; chances are you may find exactly what you are looking for.

Additionally, two more recent time-related modules are available: datetime (which supports date and
time arithmetic) and timeit (which helps you time pieces of your code). You can find more information
about both in the Python Library Reference, and timeit is also discussed briefly in Chapter 16.

random
The random module contains functions that return pseudorandom numbers, which can be useful for
simulations or any program that generates random output. Note that although the numbers appear
completely random, there is a predictable system that underlies them. If you need real randomness (for
cryptography or anything security-related, for example), you should check out the urandom function of the
os module. The class SystemRandom in the random module is based on the same kind of functionality and
gives you data that is close to real randomness.

Some important functions in this module are shown in Table 10-8.

Table 10-7.  Some Important Functions in the time Module

Function Description

asctime([tuple]) Converts a time tuple to a string

localtime([secs]) Converts seconds to a date tuple, local time

mktime(tuple) Converts a time tuple to local time

sleep(secs) Sleeps (does nothing) for secs seconds

strptime(string[, format]) Parses a string into a time tuple

time() Current time (seconds since the epoch, UTC)

http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 10 ■ Batteries Included

217

The function random.random is one of the most basic random functions; it simply returns a pseudo-random
number n such that 0 ≤ n ≤ 1. Unless this is exactly what you need, you should probably use one of the other
functions, which offer extra functionality. The function random.getrandbits returns a given number of bits
(binary digits), in the form of an integer.

The function random.uniform, when supplied with two numerical parameters a and b, returns a
random (uniformly distributed) real number n such that a n ≤ b. So, for example, if you want a random angle,
you could use uniform(0, 360).

The function random.randrange is the standard function for generating a random integer in the range
you would get by calling range with the same arguments. For example, to get a random number in the range
from 1 to 10 (inclusive), you would use randrange(1, 11) (or, alternatively, randrange(10) + 1), and if you
want a random odd positive integer lower than 20, you would use randrange(1, 20, 2).

The function random.choice chooses (uniformly) a random element from a given sequence.
The function random.shuffle shuffles the elements of a (mutable) sequence randomly, such that every

possible ordering is equally likely.
The function random.sample chooses (uniformly) a given number of elements from a given sequence,

making sure that they’re all different.

■■ Note  For the statistically inclined, there are other functions similar to uniform that return random numbers
sampled according to various other distributions, such as betavariate, exponential, Gaussian, and several others.

Let’s look at some examples using the random module. In these examples, I use several of the functions from
the time module described previously. First, let’s get the real numbers representing the limits of the time
interval (the year 2016). You do that by expressing the date as a time tuple (using -1 for day of the week, day
of the year, and daylight savings, making Python calculate that for itself) and calling mktime on these tuples:

from random import *
from time import *
date1 = (2016, 1, 1, 0, 0, 0, -1, -1, -1)
time1 = mktime(date1)
date2 = (2017, 1, 1, 0, 0, 0, -1, -1, -1)
time2 = mktime(date2)

Then you generate a random number uniformly in this range (the upper limit excluded):

>>> random_time = uniform(time1, time2)

Table 10-8.  Some Important Functions in the random Module

Function Description

random() Returns a random real number n such that 0 ≤ n ≤ 1

getrandbits(n) Returns n random bits, in the form of a long integer

uniform(a, b) Returns a random real number n such that a ≤ n ≤ b

randrange([start], stop, [step]) Returns a random number from range(start, stop, step)

choice(seq) Returns a random element from the sequence seq

shuffle(seq[, random]) Shuffles the sequence seq in place

sample(seq, n) Chooses n random, unique elements from the sequence seq

Chapter 10 ■ Batteries Included

218

Then you simply convert this number back to a legible date.

>>> print(asctime(localtime(random_time)))
Tue Aug 16 10:11:04 2016

For the next example, let’s ask the user how many dice to throw and how many sides each one should have.
The die-throwing mechanism is implemented with randrange and a for loop.

from random import randrange
num = int(input('How many dice? '))
sides = int(input('How many sides per die? '))
sum = 0
for i in range(num): sum += randrange(sides) + 1
print('The result is', sum)

If you put this in a script file and run it, you get an interaction something like the following:

How many dice? 3
How many sides per die? 6
The result is 10

Now assume that you have made a text file in which each line of text contains a fortune. Then you can use
the fileinput module described earlier to put the fortunes in a list and then select one randomly.

fortune.py
import fileinput, random
fortunes = list(fileinput.input())
print random.choice(fortunes)

In UNIX or macOS, you could test this on the standard dictionary file /usr/share/dict/words to get a
random word.

$ python fortune.py /usr/share/dict/words
dodge

As a last example, suppose that you want your program to deal you cards, one at a time, each time you press
Enter on your keyboard. Also, you want to make sure that you don’t get the same card more than once. First,
you make a “deck of cards”—a list of strings.

>>> values = list(range(1, 11)) + 'Jack Queen King'.split()
>>> suits = 'diamonds clubs hearts spades'.split()
>>> deck = ['{} of {}'.format(v, s) for v in values for s in suits]

The deck we just created isn’t very suitable for a game of cards. Let’s just peek at some of the cards:

>>> from pprint import pprint
>>> pprint(deck[:12])
['1 of diamonds',
 '1 of clubs',
 '1 of hearts',
 '1 of spades',

Chapter 10 ■ Batteries Included

219

 '2 of diamonds',
 '2 of clubs',
 '2 of hearts',
 '2 of spades',
 '3 of diamonds',
 '3 of clubs',
 '3 of hearts',
 '3 of spades']

A bit too ordered, isn’t it? That’s easy to fix.

>>> from random import shuffle
>>> shuffle(deck)
>>> pprint(deck[:12])
['3 of spades',
 '2 of diamonds',
 '5 of diamonds',
 '6 of spades',
 '8 of diamonds',
 '1 of clubs',
 '5 of hearts',
 'Queen of diamonds',
 'Queen of hearts',
 'King of hearts',
 'Jack of diamonds',
 'Queen of clubs']

Note that I’ve just printed the 12 first cards here, to save some space. Feel free to take a look at the whole
deck yourself.

Finally, to get Python to deal you a card each time you press Enter on your keyboard, until there are no
more cards, you simply create a little while loop. Assuming that you put the code needed to create the deck
into a program file, you could simply add the following at the end:

while deck: input(deck.pop())

Note that if you try this while loop in the interactive interpreter, you’ll get an empty string printed out
every time you press Enter. This is because input returns what you write (which is nothing) and that will
get printed. In a normal program, this return value from input is simply ignored. To have it “ignored”
interactively, too, just assign the result of input to some variable you won’t look at again and name it
something like ignore.

shelve and json
In the next chapter, you learn how to store data in files, but if you want a really simple storage solution, the
shelve module can do most of the work for you. All you need to do is supply it with a file name. The only
function of interest in shelve is open. When called (with a file name), it returns a Shelf object, which you
can use to store things. Just treat it as a normal dictionary (except that the keys must be strings), and when
you’re finished (and want things saved to disk), call its close method.

Chapter 10 ■ Batteries Included

220

A Potential Trap
It is important to realize that the object returned by shelve.open is not an ordinary mapping, as the
following example demonstrates:

>>> import shelve
>>> s = shelve.open('test.dat')
>>> s['x'] = ['a', 'b', 'c']
>>> s['x'].append('d')
>>> s['x']
['a', 'b', 'c']

Where did the 'd' go?
The explanation is simple: when you look up an element in a shelf object, the object is reconstructed

from its stored version; and when you assign an element to a key, it is stored. What happened in the
preceding example was the following:

•	 The list ['a', 'b', 'c'] was stored in s under the key 'x'.

•	 The stored representation was retrieved, a new list was constructed from it, and 'd'
was appended to the copy. This modified version was not stored!

•	 Finally, the original is retrieved again—without the 'd'.

To correctly modify an object that is stored using the shelve module, you must bind a temporary variable to
the retrieved copy and then store the copy again after it has been modified2:

>>> temp = s['x']
>>> temp.append('d')
>>> s['x'] = temp
>>> s['x']
['a', 'b', 'c', 'd']

There is another way around this problem: set the writeback parameter of the open function to true. If you
do, all of the data structures that you read from or assign to the shelf will be kept around in memory (cached)
and written back to disk only when you close the shelf. If you’re not working with a huge amount of data and
you don’t want to worry about these things, setting writeback to true may be a good idea. You must then
make sure to close the shelf when you’re done; one way to do that is using the shelf as a context manager,
just like with an opened file, as explained in the next chapter.

A Simple Database Example
Listing 10-8 shows a simple database application that uses the shelve module.

Listing 10-8.  A Simple Database Application

database.py
import sys, shelve

def store_person(db):

2Thanks to Luther Blissett for pointing this out.

Chapter 10 ■ Batteries Included

221

 """
 Query user for data and store it in the shelf object
 """
 pid = input('Enter unique ID number: ')
 person = {}
 person['name'] = input('Enter name: ')
 person['age'] = input('Enter age: ')
 person['phone'] = input('Enter phone number: ')
 db[pid] = person

def lookup_person(db):
 """
 Query user for ID and desired field, and fetch the corresponding data from the shelf object
 """
 pid = input('Enter ID number: ')
 field = input('What would you like to know? (name, age, phone) ')
 field = field.strip().lower()

 print(field.capitalize() + ':', db[pid][field])

def print_help():
 print('The available commands are:')
 print('store : Stores information about a person')
 print('lookup : Looks up a person from ID number')
 print('quit : Save changes and exit')
 print('? : Prints this message')

def enter_command():
 cmd = input('Enter command (? for help): ')
 cmd = cmd.strip().lower()
 return cmd

def main():
 database = shelve.open('C:\\database.dat') # You may want to change this name
 try:
 while True:
 cmd = enter_command()
 if cmd == 'store':
 store_person(database)
 elif cmd == 'lookup':
 lookup_person(database)
 elif cmd == '?':
 print_help()
 elif cmd == 'quit':
 return
 finally:
 database.close()

if name == '__main__': main()

Chapter 10 ■ Batteries Included

222

The program shown in Listing 10-8 has several interesting features:

•	 Everything is wrapped in functions to make the program more structured. (A
possible improvement is to group those functions as the methods of a class.)

•	 The main program is in the main function, which is called only if __name__ ==
'__main__'. That means you can import this as a module and then call the main
function from another program.

•	 I open a database (shelf) in the main function and then pass it as a parameter to the
other functions that need it. I could have used a global variable, too, because this
program is so small, but it’s better to avoid global variables in most cases, unless you
have a reason to use them.

•	 After reading in some values, I make a modified version by calling strip and lower
on them because if a supplied key is to match one stored in the database, the two must
be exactly alike. If you always use strip and lower on what the users enter, you can
allow them to be sloppy about using uppercase or lowercase letters and additional
whitespace. Also, note that I’ve used capitalize when printing the field name.

•	 I have used try and finally to ensure that the database is closed properly. You
never know when something might go wrong (and you get an exception), and if the
program terminates without closing the database properly, you may end up with a
corrupt database file that is essentially useless. By using try and finally, you avoid
that. I could also have used the shelf as a context manager, as explained in Chapter 11.

So, let’s take this database out for a spin. Here is a sample interaction:

Enter command (? for help): ?
The available commands are:
store : Stores information about a person
lookup : Looks up a person from ID number
quit : Save changes and exit
? : Prints this message
Enter command (? for help): store
Enter unique ID number: 001
Enter name: Mr. Gumby
Enter age: 42
Enter phone number: 555-1234
Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) phone
Phone: 555-1234
Enter command (? for help): quit

This interaction isn’t terribly interesting. I could have done exactly the same thing with an ordinary
dictionary instead of the shelf object. But now that I’ve quit the program, let’s see what happens when I
restart it—perhaps the following day?

Enter command (? for help): lookup
Enter ID number: 001
What would you like to know? (name, age, phone) name
Name: Mr. Gumby
Enter command (? for help): quit

http://dx.doi.org/10.1007/978-1-4842-0028-5_11

Chapter 10 ■ Batteries Included

223

As you can see, the program reads in the file I created the first time, and Mr. Gumby is still there!
Feel free to experiment with this program and see if you can extend its functionality and improve its

user-friendliness. Perhaps you can think of a version that you have use for yourself?

■■ Tip  If you want to save data in a form that can be easily read by programs written in other languages, you
might want to look into the JSON format. The Python standard library provides the json module to work with
JSON strings, converting between them and Python values.

re

Some people, when confronted with a problem, think, “I know, I’ll use regular expressions.”
Now they have two problems.

—Jamie Zawinski

The re module contains support for regular expressions. If you’ve heard about regular expressions, you
probably know how powerful they are; if you haven’t, prepare to be amazed.

You should note, however, that mastering regular expressions may be a bit tricky at first. The key is to
learn about them a little bit at a time—just look up the parts you need for a specific task. There is no point in
memorizing it all up front. This section describes the main features of the re module and regular expressions
and enables you to get started.

■■ Tip I n addition to the standard documentation, Andrew Kuchling’s “Regular Expression HOWTO” (https://
docs.python.org/3/howto/regex.html) is a useful source of information on regular expressions in Python.

What Is a Regular Expression?
A regular expression (also called a regex or regexp) is a pattern that can match a piece of text. The simplest
form of regular expression is just a plain string, which matches itself. In other words, the regular expression
'python' matches the string 'python'. You can use this matching behavior for such things as searching for
patterns in text, replacing certain patterns with some computed values or splitting text into pieces.

The Wildcard

A regular expression can match more than one string, and you create such a pattern by using some special
characters. For example, the period character (dot) matches any character (except a newline), so the regular
expression '.ython' would match both the string 'python' and the string 'jython'. It would also match
strings such as 'qython', '+ython', or ' ython' (in which the first letter is a single space), but not strings
such as 'cpython' or 'ython' because the period matches a single letter, and neither two nor zero.

Because it matches “anything” (any single character except a newline), the period is called a wildcard.

http://amk.ca/python/howto/regex/)
http://amk.ca/python/howto/regex/)

Chapter 10 ■ Batteries Included

224

Escaping Special Characters

Ordinary characters match themselves and nothing else. Special characters, however, are a different story.
For example, imagine you want to match the string 'python.org'. Do you simply use the pattern 'python.org'?
You could, but that would also match 'pythonzorg', for example, which you probably wouldn’t want. (The
dot matches any character except a newline, remember?) To make a special character behave like a normal
one, you escape it, just as I demonstrated how to escape quotes in strings in Chapter 1. You place a backslash
in front of it. Thus, in this example, you would use 'python\\.org', which would match 'python.org' and
nothing else.

Note that to get a single backslash, which is required here by the re module, you need to write two
backslashes in the string—to escape it from the interpreter. Thus, you have two levels of escaping here: (1)
from the interpreter and (2) from the re module. (Actually, in some cases you can get away with using a
single backslash and have the interpreter escape it for you automatically, but don’t rely on it.) If you are tired
of doubling up backslashes, use a raw string, such as r'python\.org'.

Character Sets

Matching any character can be useful, but sometimes you want more control. You can create a so-called
character set by enclosing a substring in brackets. Such a character set will match any of the characters it
contains. For example, '[pj]ython' would match both 'python' and 'jython', but nothing else. You can
also use ranges, such as '[a-z]' to match any character from a to z (alphabetically), and you can combine
such ranges by putting one after another, such as '[a-zA-Z0-9]' to match uppercase and lowercase letters
and digits. (Note that the character set will match only one such character, though.)

To invert the character set, put the character ^ first, as in '[^abc]' to match any character except a, b, or c.

SPECIAL CHARACTERS IN CHARACTER SETS

In general, special characters such as dots, asterisks, and question marks must be escaped with a
backslash if you want them to appear as literal characters in the pattern, rather than function as regular
expression operators. Inside character sets, escaping these characters is generally not necessary
(although perfectly legal). You should, however, keep in mind the following rules:

•	 You do need to escape the caret (^) if it appears at the beginning of the character set,
unless you want it to function as a negation operator. (In other words, don’t place it at
the beginning unless you mean it.)

•	 Similarly, the right bracket (]) and the dash (-) must be put either at the beginning of
the character set or escaped with a backslash. (Actually, the dash may also be put at
the end, if you wish.)

Alternatives and Subpatterns

Character sets are nice when you let each letter vary independently, but what if you want to match only
the strings 'python' and 'perl'? You can’t specify such a specific pattern with character sets or wildcards.
Instead, you use the special character for alternatives: the pipe character (|). So, your pattern would be
'python|perl'.

However, sometimes you don’t want to use the choice operator on the entire pattern—just a part of it.
To do that, you enclose the part, or subpattern, in parentheses. The previous example could be rewritten as
'p(ython|erl)'. (Note that the term subpattern can also apply to a single character.)

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

Chapter 10 ■ Batteries Included

225

Optional and Repeated Subpatterns

By adding a question mark after a subpattern, you make it optional. It may appear in the matched string, but
it isn’t strictly required. So, for example, this (slightly unreadable) pattern:

r'(http://)?(www\.)?python\.org'

would match all of the following strings (and nothing else):

'http://www.python.org'
'http://python.org'
'www.python.org'
'python.org'

These things are worth noting here:

•	 I’ve escaped the dots, to prevent them from functioning as wildcards.

•	 I’ve used a raw string to reduce the number of backslashes needed.

•	 Each optional subpattern is enclosed in parentheses.

•	 The optional subpatterns may or may not appear, independently of each other.

The question mark means that the subpattern can appear once or not at all. A few other operators allow you
to repeat a subpattern more than once.

•	 (pattern)*: pattern is repeated zero or more times.

•	 (pattern)+: pattern is repeated one or more times.

•	 (pattern){m,n}: pattern is repeated from m to n times.

So, for example, r'w*\.python\.org' matches 'www.python.org' but also '.python.org', 'ww.python.
org', and 'wwwwwww.python.org'. Similarly, r'w+\.python\.org' matches 'w.python.org' but not
'.python.org', and r'w{3,4}\.python\.org' matches only 'www.python.org' and 'wwww.python.org'.

■■ Note T he term match is used loosely here to mean that the pattern matches the entire string. The match
function (see Table 10-9) requires only that the pattern matches the beginning of the string.

The Beginning and End of a String

Until now, you’ve only been looking at a pattern matching an entire string, but you can also try to find a
substring that matches the pattern, such as the substring 'www' of the string 'www.python.org' matching
the pattern 'w+'. When you’re searching for substrings like this, it can sometimes be useful to anchor this
substring either at the beginning or the end of the full string. For example, you might want to match 'ht+p'
at the beginning of a string but not anywhere else. Then you use a caret ('^') to mark the beginning. For
example, '^ht+p' would match 'http://python.org' (and 'htttttp://python.org', for that matter) but
not 'www.http.org'. Similarly, the end of a string may be indicated by the dollar sign ($).

■■ Note  For a complete listing of regular expression operators, see the section “Regular Expression Syntax” in
the Python Library.

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://python.org/
http://www.http.org/

Chapter 10 ■ Batteries Included

226

Contents of the re Module
Knowing how to write regular expressions isn’t much good if you can’t use them for anything. The re
module contains several useful functions for working with regular expressions. Some of the most important
ones are described in Table 10-9.

Table 10-9.  Some Important Functions in the re Module

Function Description

compile(pattern[, flags]) Creates a pattern object from a string with a regular expression

search(pattern, string[, flags]) Searches for pattern in string

match(pattern, string[, flags]) Matches pattern at the beginning of string

split(pattern, string[, maxsplit=0]) Splits a string by occurrences of pattern

findall(pattern, string) Returns a list of all occurrences of pattern in string

sub(pat, repl, string[, count=0]) Substitutes occurrences of pat in string with repl

escape(string) Escapes all special regular expression characters in string

The function re.compile transforms a regular expression (written as a string) to a pattern object, which
can be used for more efficient matching. If you use regular expressions represented as strings when you
call functions such as search or match, they must be transformed into regular expression objects internally
anyway. By doing this once, with the compile function, this step is no longer necessary each time you use
the pattern. The pattern objects have the searching/matching functions as methods, so re.search(pat,
string) (where pat is a regular expression written as a string) is equivalent to pat.search(string) (where
pat is a pattern object created with compile). Compiled regular expression objects can also be used in the
normal re functions.

The function re.search searches a given string to find the first substring, if any, that matches the
given regular expression. If one is found, a MatchObject (evaluating to true) is returned; otherwise, None
(evaluating to false) is returned. Because of the nature of the return values, the function can be used in
conditional statements, like this:

if re.search(pat, string):
 print('Found it!')

However, if you need more information about the matched substring, you can examine the returned
MatchObject. (You’ll learn more about MatchObject in the next section.)

The function re.match tries to match a regular expression at the beginning of a given string. So re.
match('p', 'python') returns true (a match object), while re.match('p', 'www.python.org') returns
false (None).

■■ Note T he match function will report a match if the pattern matches the beginning of a string; the pattern
is not required to match the entire string. If you want to do that, you need to add a dollar sign to the end of your
pattern. The dollar sign will match the end of the string and thereby “stretch out” the match.

http://www.python.org/

Chapter 10 ■ Batteries Included

227

The function re.split splits a string by the occurrences of a pattern. This is similar to the string method
split, except that you allow full regular expressions instead of only a fixed separator string. For example,
with the string method split, you could split a string by the occurrences of the string ', ' but with re.
split you can split on any sequence of space characters and commas.

>>> some_text = 'alpha, beta,,,,gamma delta'
>>> re.split('[,]+', some_text)
['alpha', 'beta', 'gamma', 'delta']

■■ Note I f the pattern contains parentheses, the parenthesized groups are interspersed between the split
substrings. For example, re.split('o(o)', 'foobar') would yield ['f', 'o', 'bar'].

As you can see from this example, the return value is a list of substrings. The maxsplit argument indicates
the maximum number of splits allowed.

>>> re.split('[,]+', some_text, maxsplit=2)
['alpha', 'beta', 'gamma delta']
>>> re.split('[,]+', some_text, maxsplit=1)
['alpha', 'beta,,,,gamma delta']

The function re.findall returns a list of all occurrences of the given pattern. For example, to find all words
in a string, you could do the following:

>>> pat = '[a-zA-Z]+'
>>> text = '"Hm... Err -- are you sure?" he said, sounding insecure.'
>>> re.findall(pat, text)
['Hm', 'Err', 'are', 'you', 'sure', 'he', 'said', 'sounding', 'insecure']

Or you could find the punctuation:

>>> pat = r'[.?\-",]+'
>>> re.findall(pat, text)
['"', '...', '--', '?"', ',', '.']

Note that the dash (-) has been escaped so Python won’t interpret it as part of a character range (such
as a-z).

The function re.sub is used to substitute the leftmost, nonoverlapping occurrences of a pattern with a
given replacement. Consider the following example:

>>> pat = '{name}'
>>> text = 'Dear {name}...'
>>> re.sub(pat, 'Mr. Gumby', text)
'Dear Mr. Gumby...'

See the section “Group Numbers and Functions in Substitutions” later in this chapter for information about
how to use this function more effectively.

Chapter 10 ■ Batteries Included

228

The function re.escape is a utility function used to escape all the characters in a string that might be
interpreted as a regular expression operator. Use this if you have a long string with a lot of these special
characters and you want to avoid typing a lot of backslashes or if you get a string from a user (for example,
through the input function) and want to use it as a part of a regular expression. Here is an example of
how it works:

>>> re.escape('www.python.org')
'www\\.python\\.org'
>>> re.escape('But where is the ambiguity?')
'But\\ where\\ is\\ the\\ ambiguity\\?'

■■ Note  In Table 10-9, you’ll notice that some of the functions have an optional parameter called flags. This
parameter can be used to change how the regular expressions are interpreted. For more information about this,
see the section about the re module in the Python Library Reference.

Match Objects and Groups
The re functions that try to match a pattern against a section of a string all return MatchObject objects when
a match is found. These objects contain information about the substring that matched the pattern. They also
contain information about which parts of the pattern matched which parts of the substring. These parts are
called groups.

A group is simply a subpattern that has been enclosed in parentheses. The groups are numbered by
their left parenthesis. Group zero is the entire pattern. So, in this pattern:

'There (was a (wee) (cooper)) who (lived in Fyfe)'

the groups are as follows:

0 There was a wee cooper who lived in Fyfe
1 was a wee cooper
2 wee
3 cooper
4 lived in Fyfe

Typically, the groups contain special characters such as wildcards or repetition operators, and thus you may
be interested in knowing what a given group has matched. For example, in this pattern:

r'www\.(.+)\.com$'

group 0 would contain the entire string, and group 1 would contain everything between 'www.' and '.com'. By
creating patterns like this, you can extract the parts of a string that interest you.

Some of the more important methods of re match objects are described in Table 10-10.

Chapter 10 ■ Batteries Included

229

The method group returns the (sub)string that was matched by a given group in the pattern. If no group
number is given, group 0 is assumed. If only a single group number is given (or you just use the default, 0), a
single string is returned. Otherwise, a tuple of strings corresponding to the given group numbers is returned.

■■ Note I n addition to the entire match (group 0), you can have only 99 groups, with numbers in the range 1–99.

The method start returns the starting index of the occurrence of the given group (which defaults to 0,
the whole pattern).

The method end is similar to start but returns the ending index plus one.
The method span returns the tuple (start, end) with the starting and ending indices of a given group

(which defaults to 0, the whole pattern).
The following example demonstrates how these methods work:

>>> m = re.match(r'www\.(.*)\..{3}', 'www.python.org')
>>> m.group(1)
'python'
>>> m.start(1)
4
>>> m.end(1)
10
>>> m.span(1)
(4, 10)

Group Numbers and Functions in Substitutions
In the first example using re.sub, I simply replaced one substring with another—something I could easily
have done with the replace string method (described in the section “String Methods” in Chapter 3). Of
course, regular expressions are useful because they allow you to search in a more flexible manner, but they
also allow you to perform more powerful substitutions.

The easiest way to harness the power of re.sub is to use group numbers in the substitution string.
Any escape sequences of the form '\\n' in the replacement string are replaced by the string matched by
group n in the pattern. For example, let’s say you want to replace words of the form '*something*' with
'something', where the former is a normal way of expressing emphasis in plain-text documents
(such as email), and the latter is the corresponding HTML code (as used in web pages). Let’s first construct
the regular expression.

>>> emphasis_pattern = r'*([^*]+)*'

Table 10-10.  Some Important Methods of re Match Objects

Method Description

group([group1, …]) Retrieves the occurrences of the given subpatterns (groups)

start([group]) Returns the starting position of the occurrence of a given group

end([group]) Returns the ending position (an exclusive limit, as in slices) of the occurrence
of a given group

span([group]) Returns both the beginning and ending positions of a group

http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 10 ■ Batteries Included

230

Note that regular expressions can easily become hard to read, so using meaningful variable names (and
possibly a comment or two) is important if anyone (including you!) is going to view the code at some
point.

■■ Tip  One way to make your regular expressions more readable is to use the VERBOSE flag in the re
functions. This allows you to add whitespace (space characters, tabs, newlines, and so on) to your pattern,
which will be ignored by re—except when you put it in a character class or escape it with a backslash. You can
also put comments in such verbose regular expressions. The following is a pattern object that is equivalent to
the emphasis pattern, but which uses the VERBOSE flag:

>>> emphasis_pattern = re.compile(r'''

... * # Beginning emphasis tag -- an asterisk

... (# Begin group for capturing phrase

... [^*]+ # Capture anything except asterisks

...) # End group

... * # Ending emphasis tag

... ''', re.VERBOSE)

...

Now that I have my pattern, I can use re.sub to make my substitution.

>>> re.sub(emphasis_pattern, r'\1', 'Hello, *world*!')
'Hello, world!'

As you can see, I have successfully translated the text from plain text to HTML.
But you can make your substitutions even more powerful by using a function as the replacement. This

function will be supplied with the MatchObject as its only parameter, and the string it returns will be used as
the replacement. In other words, you can do whatever you want to the matched substring and do elaborate
processing to generate its replacement. What possible use could you have for such power, you ask? Once you
start experimenting with regular expressions, you will surely find countless uses for this mechanism. For one
application, see the section “A Sample Template System” a little later in the chapter.

GREEDY AND NONGREEDY PATTERNS

The repetition operators are by default greedy, which means that they will match as much as possible.
For example, let’s say I rewrote the emphasis program to use the following pattern:

>>> emphasis_pattern = r'*(.+)*'

This matches an asterisk, followed by one or more characters and then another asterisk. Sounds
perfect, doesn’t it? But it isn’t.

>>> re.sub(emphasis_pattern, r'\1', '*This* is *it*!')
'This* is *it!'

Chapter 10 ■ Batteries Included

231

As you can see, the pattern matched everything from the first asterisk to the last—including the two
asterisks between! This is what it means to be greedy: take everything you can.

In this case, you clearly don’t want this overly greedy behavior. The solution presented in the preceding
text (using a character set matching anything except an asterisk) is fine when you know that one
specific letter is illegal. But let’s consider another scenario. What if you used the form '**something**'
to signify emphasis? Now it shouldn’t be a problem to include single asterisks inside the emphasized
phrase. But how do you avoid being too greedy?

Actually, it’s quite easy—you just use a nongreedy version of the repetition operator. All the repetition
operators can be made nongreedy by putting a question mark after them.

>>> emphasis_pattern = r'**(.+?)**'
>>> re.sub(emphasis_pattern, r'\1', '**This** is **it**!')
'This is it!'

Here I’ve used the operator +? instead of +, which means that the pattern will match one or more
occurrences of the wildcard, as before. However, it will match as few as it can, because it is now
nongreedy. So, it will match only the minimum needed to reach the next occurrence of '**', which is
the end of the pattern. As you can see, it works nicely.

Finding the Sender of an Email
Have you ever saved an email as a text file? If you have, you may have seen that it contains a lot of essentially
unreadable text at the top, similar to that shown in Listing 10-9.

Listing 10-9.  A Set of (Fictitious) Email Headers

From foo@bar.baz Thu Dec 20 01:22:50 2008
Return-Path: <foo@bar.baz>
Received: from xyzzy42.bar.com (xyzzy.bar.baz [123.456.789.42])
 by frozz.bozz.floop (8.9.3/8.9.3) with ESMTP id BAA25436
 for <magnus@bozz.floop>; Thu, 20 Dec 2004 01:22:50 +0100 (MET)
Received: from [43.253.124.23] by bar.baz
 (InterMail vM.4.01.03.27 201-229-121-127-20010626) with ESMTP
 id <20041220002242.ADASD123.bar.baz@[43.253.124.23]>; Thu, 20 Dec 2004 00:22:42 +0000
User-Agent: Microsoft-Outlook-Express-Macintosh-Edition/5.02.2022
Date: Wed, 19 Dec 2008 17:22:42 -0700
Subject: Re: Spam
From: Foo Fie <foo@bar.baz>
To: Magnus Lie Hetland <magnus@bozz.floop>
CC: <Mr.Gumby@bar.baz>
Message-ID: <B8467D62.84F%foo@baz.com>
In-Reply-To: <20041219013308.A2655@bozz.floop> Mime- version: 1.0
Content-type: text/plain; charset="US-ASCII" Content-transfer-encoding: 7bit
Status: RO
Content-Length: 55
Lines: 6

Chapter 10 ■ Batteries Included

232

So long, and thanks for all the spam!

Yours,
Foo Fie

Let’s try to find out who this email is from. If you examine the text, I’m sure you can figure it out in this case
(especially if you look at the signature at the bottom of the message itself, of course). But can you see a
general pattern? How do you extract the name of the sender, without the email address? Or how can you list
all the email addresses mentioned in the headers? Let’s handle the former task first.

The line containing the sender begins with the string 'From: ' and ends with an email address
enclosed in angle brackets (< and >). You want the text found between those brackets. If you use the
fileinput module, this should be an easy task. A program solving the problem is shown in Listing 10-10.

■■ Note  You could solve this problem without using regular expressions if you wanted. You could also use the
email module.

Listing 10-10.  A Program for Finding the Sender of an Email

find_sender.py
import fileinput, re
pat = re.compile('From: (.*) <.*?>$')
for line in fileinput.input():
 m = pat.match(line)
 if m: print(m.group(1))

You can then run the program like this (assuming that the email message is in the text file message.eml):

$ python find_sender.py message.eml
Foo Fie

You should note the following about this program:

•	 I compile the regular expression to make the processing more efficient.

•	 I enclose the subpattern I want to extract in parentheses, making it a group.

•	 I use a nongreedy pattern so the email address matches only the last pair of angle
brackets (just in case the name contains some brackets).

•	 I use a dollar sign to indicate that I want the pattern to match the entire line, all the
way to the end.

•	 I use an if statement to make sure that I did in fact match something before I try to
extract the match of a specific group.

To list all the email addresses mentioned in the headers, you need to construct a regular expression that
matches an email address but nothing else. You can then use the method findall to find all the occurrences
in each line. To avoid duplicates, you keep the addresses in a set (described earlier in this chapter). Finally,
you extract the keys, sort them, and print them out.

Chapter 10 ■ Batteries Included

233

import fileinput, re
pat = re.compile(r'[a-z\-\.]+@[a-z\-\.]+', re.IGNORECASE)
addresses = set()

for line in fileinput.input():
 for address in pat.findall(line):
 addresses.add(address)
for address in sorted(addresses):
 print address

The resulting output when running this program (with the email message in Listing 10-9 as input) is as
follows:

Mr.Gumby@bar.baz
foo@bar.baz
foo@baz.com
magnus@bozz.floop

Note that when sorting, uppercase letters come before lowercase letters.

■■ Note I haven’t adhered strictly to the problem specification here. The problem was to find the addresses
in the header, but in this case the program finds all the addresses in the entire file. To avoid that, you can call
fileinput.close() if you find an empty line, because the header can’t contain empty lines. Alternatively, you
can use fileinput.nextfile() to start processing the next file, if there is more than one.

A Sample Template System
A template is a file you can put specific values into to get a finished text of some kind. For example, you may
have a mail template requiring only the insertion of a recipient name. Python already has an advanced
template mechanism: string formatting. However, with regular expressions, you can make the system even
more advanced. Let’s say you want to replace all occurrences of '[something]' (the “fields”) with the result
of evaluating something as an expression in Python. Thus, this string:

'The sum of 7 and 9 is [7 + 9].'

should be translated to this:

'The sum of 7 and 9 is 16.'

Also, you want to be able to perform assignments in these fields so that this string:

'[name="Mr. Gumby"]Hello, [name]'

should be translated to this:

'Hello, Mr. Gumby'

Chapter 10 ■ Batteries Included

234

This may sound like a complex task, but let’s review the available tools.

•	 You can use a regular expression to match the fields and extract their contents.

•	 You can evaluate the expression strings with eval, supplying the dictionary
containing the scope. You do this in a try/except statement. If a SyntaxError is
raised, you probably have a statement (such as an assignment) on your hands and
should use exec instead.

•	 You can execute the assignment strings (and other statements) with exec, storing the
template’s scope in a dictionary.

•	 You can use re.sub to substitute the result of the evaluation into the string being
processed. Suddenly, it doesn’t look so intimidating, does it?

■■ Tip I f a task seems daunting, it almost always helps to break it down into smaller pieces. Also, take stock
of the tools at your disposal for ideas on how to solve your problem.

See Listing 10-11 for a sample implementation.

Listing 10-11.  A Template System

templates.py

import fileinput, re

Matches fields enclosed in square brackets:
field_pat = re.compile(r'\[(.+?)\]')

We'll collect variables in this:
scope = {}

This is used in re.sub:
def replacement(match):
 code = match.group(1)
 try:
 # If the field can be evaluated, return it:
 return str(eval(code, scope))
 except SyntaxError:
 # Otherwise, execute the assignment in the same scope ... exec code in scope
 # ... and return an empty string:
 return ''

Get all the text as a single string:

(There are other ways of doing this; see Chapter 11)
lines = []
for line in fileinput.input():
 lines.append(line)
text = ''.join(lines)

Substitute all the occurrences of the field pattern:
print(field_pat.sub(replacement, text))

Chapter 10 ■ Batteries Included

235

Simply put, this program does the following:

•	 Defines a pattern for matching fields.

•	 Creates a dictionary to act as a scope for the template.

•	 Defines a replacement function that does the following:

•	 Grabs group 1 from the match and puts it in code.

•	 Tries to evaluate code with the scope dictionary as namespace, converts the
result to a string, and returns it. If this succeeds, the field was an expression and
everything is fine. Otherwise (that is, a SyntaxError is raised), go to the next step.

•	 Executes the field in the same namespace (the scope dictionary) used
for evaluating expressions and then returns an empty string (because the
assignment doesn’t evaluate to anything).

•	 Uses fileinput to read in all available lines, put them in a list, and join them into
one big string.

•	 Replaces all occurrences of field_pat using the replacement function in re.sub and
prints the result.

■■ Note  In previous versions of Python, it was much more efficient to put the lines into a list and then join
them at the end than to do something like this:

text = ''

for line in fileinput.input():

 text += line

Although this looks elegant, each assignment must create a new string, which is the old string with the new one
appended, which can lead to a waste of resources and make your program slow. In older versions of Python,
the difference between this and using join could be huge. In more recent versions, using the += operator may,
in fact, be faster. If performance is important to you, you could try out both solutions. And if you want a more
elegant way to read in all the text of a file, take a peek at Chapter 11.

So, we have just created a really powerful template system in only 15 lines of code (not counting whitespace
and comments). I hope you’re starting to see how powerful Python becomes when you use the standard
libraries. Let’s finish this example by testing the template system. Try running it on the simple file shown in
Listing 10-12.

Listing 10-12.  A Simple Template Example

[x = 2]
[y = 3]
The sum of [x] and [y] is [x + y].

You should see this:

The sum of 2 and 3 is 5.

http://dx.doi.org/10.1007/978-1-4842-0028-5_11

Chapter 10 ■ Batteries Included

236

But wait, it gets better! Because I have used fileinput, I can process several files in turn. That means that I
can use one file to define values for some variables and then another file as a template where these values
are inserted. For example, I might have one file with definitions as in Listing 10-13, named magnus.txt, and
a template file as in Listing 10-14, named template.txt.

Listing 10-13.  Some Template Definitions

[name = 'Magnus Lie Hetland']
[email = 'magnus@foo.bar']
[language = 'python']

Listing 10-14.  A Template

[import time]
Dear [name],

I would like to learn how to program. I hear you
 use the [language] language a lot -- is it something I
 should consider?

And, by the way, is [email] your correct email address?

Fooville, [time.asctime()]

Oscar Frozzbozz

The import time statement isn’t an assignment (which is the statement type I set out to handle), but
because I’m not being picky and just use a simple try/except statement, my program supports any
statement or expression that works with eval or exec. You can run the program like this (assuming a UNIX
command line):

$ python templates.py magnus.txt template.txt

You should get some output similar to the following:

Dear Magnus Lie Hetland,

I would like to learn how to program. I hear you use the python language a lot -- is it something I
should consider?

And, by the way, is magnus@foo.bar your correct email address?

Fooville, Mon Jul 18 15:24:10 2016

Oscar Frozzbozz

Even though this template system is capable of some quite powerful substitutions, it still has some flaws. For
example, it would be nice if you could write the definition file in a more flexible manner. If it were executed
with execfile, you could simply use normal Python syntax. That would also fix the problem of getting all
those blank lines at the top of the output.

Can you think of other ways of improving the program? Can you think of other uses for the concepts
used in this program? The best way to become really proficient in any programming language is to play with
it—test its limitations and discover its strengths. See if you can rewrite this program so it works better and
suits your needs.

Chapter 10 ■ Batteries Included

237

Other Interesting Standard Modules
Even though this chapter has covered a lot of material, I have barely scratched the surface of the standard
libraries. To tempt you to dive in, I’ll quickly mention a few more cool libraries.

argparse: In UNIX, command-line programs are often run with various options
or switches. (The Python interpreter is a typical example.) These will all be found
in sys.argv, but handling these correctly yourself is far from easy. The argparse
module makes it straightforward to provide a full-fledged command-line
interface.

cmd: This module enables you to write a command-line interpreter, somewhat
like the Python interactive interpreter. You can define your own commands
that the user can execute at the prompt. Perhaps you could use this as the user
interface to one of your programs?

csv: CSV is short for comma-separated values, a simple format used by many
applications (for example, many spreadsheets and database programs) to
store tabular data. It is mainly used when exchanging data between different
programs. The csv module lets you read and write CSV files easily, and it handles
some of the trickier parts of the format quite transparently.

datetime: If the time module isn’t enough for your time-tracking needs, it’s quite
possible that datetime will be. It has support for special date and time objects
and allows you to construct and combine these in various ways. The interface is
in many ways a bit more intuitive than that of the time module.

difflib: This library enables you to compute how similar two sequences are. It
also enables you to find the sequences (from a list of possibilities) that are “most
similar” to an original sequence you provide. difflib could be used to create a
simple searching program, for example.

enum: An enumeration type is a type with a fixed, small number of possible
values. Many languages have such types built in, but if you need one in Python,
the enum module is your friend.

functools: Here, you can find functionality that lets you use a function with only
some of its parameters (partial evaluation), filling in the remaining ones at a later
time. In Python 3.0, this is where you will find filter and reduce.hashlib. With
this module, you can compute small “signatures” (numbers) from strings. And if
you compute the signatures for two different strings, you can be almost certain
that the two signatures will be different. You can use this on large text files. These
modules have several uses in cryptography and security.3

itertools: Here, you have a lot of tools for creating and combining iterators (or
other iterable objects). There are functions for chaining iterables, for creating
iterators that return consecutive integers forever (similar to range, but without
an upper limit), to cycle through an iterable repeatedly, and other useful stuff.

3See also the md5 and sha modules.

Chapter 10 ■ Batteries Included

238

logging: Simply using print statements to figure out what’s going on in your
program can be useful. If you want to keep track of things even without having
a lot of debugging output, you might write this information to a log file. This
module gives you a standard set of tools for managing one or more central logs,
with several levels of priority for your log messages, among other things.

statistics: Computing the average of a set of numbers isn’t all that hard,
but getting the median right, even for an even-numbered of elements, and to
implement the differences of the population and sample standard deviations, for
example, requires a bit more care. Rather than doing this yourself, just use the
statistics module!

timeit, profile, and trace: The timeit module (with its accompanying
command-line script) is a tool for measuring the time a piece of code takes to
run. It has some tricks up its sleeve, and you probably ought to use it rather than
the time module for performance measurements. The profile module (along
with its companion module, pstats) can be used for a more comprehensive
analysis of the efficiency of a piece of code. The trace module (and program) can
give you a coverage analysis (that is, which parts of your code are executed and
which are not). This can be useful when writing test code, for example.

A Quick Summary
In this chapter, you learned about modules: how to create them, how to explore them, and how to use some
of those included in the standard Python libraries.

Modules: A module is basically a subprogram whose main function is to define
things, such as functions, classes, and variables. If a module contains any test
code, it should be placed in an if statement that checks whether name == '__
main__'. Modules can be imported if they are in the PYTHONPATH. You import a
module stored in the file foo.py with the statement import foo.

Packages: A package is just a module that contains other modules. Packages are
implemented as directories that contain a file named __init__.py.

Exploring modules: After you have imported a module into the interactive
interpreter, you can explore it in many ways. Among them are using
dir, examining the __all__ variable, and using the help function. The
documentation and the source code can also be excellent sources of information
and insight.

The standard library: Python comes with several modules included, collectively
called the standard library. Some of these were reviewed in this chapter:

•	 sys: A module that gives you access to several variables and functions that
are tightly linked with the Python interpreter.

•	 os: A module that gives you access to several variables and functions that
are tightly linked with the operating system.

•	 fileinput: A module that makes it easy to iterate over the lines of several
files or streams.

•	 sets, heapq, and deque: Three modules that provide three useful data
structures. Sets are also available in the form of the built-in type set.

Chapter 10 ■ Batteries Included

239

•	 time: A module for getting the current time and for manipulating and
formatting times and dates.

•	 random: A module with functions for generating random numbers, choosing
random elements from a sequence, and shuffling the elements of a list.

•	 shelve: A module for creating a persistent mapping, which stores its
contents in a database with a given file name.

•	 re: A module with support for regular expressions.

If you are curious to find out more about modules, I again urge you to browse the Python Library Reference.
It’s really interesting reading.

New Functions in This Chapter

Function Description

dir(obj) Returns an alphabetized list of attribute names

help([obj]) Provides interactive help or help about a specific object

imp.reload(module) Returns a reloaded version of a module that has already been imported

What Now?
If you have grasped at least a few of the concepts in this chapter, your Python prowess has probably taken a
great leap forward. With the standard libraries at your fingertips, Python changes from powerful to extremely
powerful. With what you have learned so far, you can write programs to tackle a wide range of problems. In
the next chapter, you learn more about using Python to interact with the outside world of files and networks
and thereby tackle problems of greater scope.

241© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_11

CHAPTER 11

Files and Stuff

So far, we’ve mainly been working with data structures that reside in the interpreter itself. What little
interaction our programs have had with the outside world has been through input and print. In this
chapter, we go one step further and let our programs catch a glimpse of a larger world: the world of files and
streams. The functions and objects described in this chapter will enable you to store data between program
invocations and to process data from other programs.

Opening Files
You can open files with the open function, which lives in the io module but is automatically imported for
you. It takes a file name as its only mandatory argument and returns a file object. Assuming that you have a
text file (created with your text editor, perhaps) called somefile.txt stored in the current directory, you can
open it like this:

>>> f = open('somefile.txt')

You can also specify the full path to the file, if it’s located somewhere else. If it doesn’t exist, however, you’ll
see an exception traceback like this:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'somefile.txt'

If you wanted to create the file by writing text to it, this isn’t entirely satisfactory. The solution is found in the
second argument to open.

File Modes
If you use open with only a file name as a parameter, you get a file object you can read from. If you want to
write to the file, you must state that explicitly, supplying a mode. The mode argument to the open function
can have several values, as summarized in Table 11-1.

Chapter 11 ■ Files and Stuff

242

Explicitly specifying read mode has the same effect as not supplying a mode string at all. The write mode
enables you to write to the file and will create the file if it does not exist. The exclusive write mode goes
further and raises a FileExistsError if the file already exists. If you open an existing file in write mode, the
existing contents will be deleted, or truncated, and writing starts afresh from the beginning of the file; if you’d
rather just keep writing at the end of the existing file, use append mode.

The '+' can be added to any of the other modes to indicate that both reading and writing is allowed. So,
for example, 'r+' can be used when opening a text file for reading and writing. (For this to be useful, you will
probably want to use seek as well; see the sidebar “Random Access” later in this chapter.) Note that there is
an important difference between 'r+' and 'w+': the latter will truncate the file, while the former will not.

The default mode is 'rt', which means your file is treated as encoded Unicode text. Decoding and
encoding are then performed automatically, with UTF-8 as the default encoding. Other encodings and
Unicode error-handling strategies may be set using the encoding and errors keyword arguments. (See
Chapter 1 for more on Unicode.) There is also some automatic translation of newline characters. By default,
lines are ended by '\n'. Other line endings ('\r' or '\r\n') are automatically replaced on reading. On
writing, '\n' is replaced by the system’s default line ending (os.linesep).

Normally, Python uses what is called universal newline mode, where any valid newline ('\n', '\r', or
'\r\n') is recognized, for example, by the readlines method, discussed later. If you wish to keep this mode
but want to prevent automatic translation to and from '\n', you can supply an empty string to the newline
keyword argument, as in open(name, newline=''). If you want to specify that only '\r' or '\r\n' is to be
treated as a valid line ending, supply your preferred line ending instead. In this case, the line ending is not
translated when reading, but '\n' will be replaced by the proper line ending when writing.

If your file contains nontextual, binary data, such as a sound clip or image, you certainly wouldn’t want
any of these automatic transformations to be performed. In that case, you simply use binary mode ('rb', for
example) to turn off any text-specific functionality.

There are a few other more slightly advanced optional arguments, as well, for controlling buffering
and working more directly with file descriptors. See the Python documentation, or run help(open) in the
interactive interpreter, to find out more.

The Basic File Methods
Now you know how to open files. The next step is to do something useful with them. In this section, you
learn about some basic methods of file objects and about some other file-like objects, sometimes called
streams. A file-like object is simply one supporting a few of the same methods as a file, most notably either
read or write or both. The objects returned by urlopen (see Chapter 14) are a good example of this. They
support methods such as read and readline, but not methods such as write and isatty, for example.

Table 11-1.  Most Common Values for the Mode Argument of the open Function

Value Description

'r' Read mode (default)

'w' Write mode

'x' Exclusive write mode

'a' Append mode

'b' Binary mode (added to other mode)

't' Text mode (default, added to other mode)

'+' Read/write mode (added to other mode)

http://dx.doi.org/10.1007/978-1-4842-0028-5_1
http://dx.doi.org/10.1007/978-1-4842-0028-5_14

Chapter 11 ■ Files and Stuff

243

THREE STANDARD STREAMS

In Chapter 10, in the section about the sys module, I mentioned three standard streams. These are file-
like objects, and you can apply most of what you learn about files to them.

A standard source of data input is sys.stdin. When a program reads from standard input, you can
supply text by typing it, or you can link it with the standard output of another program, using a pipe, as
demonstrated in the section “Piping Output.”

The text you give to print appears in sys.stdout. The prompts for input also go there. Data written
to sys.stdout typically appears on your screen but can be rerouted to the standard input of another
program with a pipe, as mentioned.

Error messages (such as stack traces) are written to sys.stderr, which is similar to sys.stdout but
can be rerouted separately.

Reading and Writing
The most important capabilities of files are supplying and receiving data. If you have a file-like object named
f, you can write data with f.write and read data with f.read. As with most Python functionality, there is
some flexibility in what you use as data, but the basic classes used are str and bytes, for text and binary
mode, respectively.

Each time you call f.write(string), the string you supply is written to the file after those you have
written previously.

>>> f = open('somefile.txt', 'w')
>>> f.write('Hello, ')
7
>>> f.write('World!')
6
>>> f.close()

Notice that I call the close method when I’m finished with the file. You’ll learn more about it in the section
“Closing Files” later in this chapter. Reading is just as simple. Just remember to tell the stream how many
characters (or bytes, in binary mode) you want to read. Here’s an example (continuing where I left off):

>>> f = open('somefile.txt', 'r')
>>> f.read(4)
'Hell'
>>> f.read()
'o, World!'

First I specify how many characters to read (4), and then I simply read the rest of the file (by not supplying
a number). Note that I could have dropped the mode specification from the call to open because 'r' is
the default.

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 11 ■ Files and Stuff

244

Piping Output
In a shell such as bash, you can write several commands after one another, linked together with pipes, as in
this example:

$ cat somefile.txt | python somescript.py | sort

This pipeline consists of three commands.

•	 cat somefile.txt: This command simply writes the contents of the file somefile.txt
to standard output (sys.stdout).

•	 python somescript.py: This command executes the Python script somescript. The
script presumably reads from its standard input and writes the result to standard
output.

•	 sort: This command reads all the text from standard input (sys.stdin), sorts the
lines alphabetically, and writes the result to standard output.

But what is the point of these pipe characters (|), and what does somescript.py do? The pipes link up the
standard output of one command with the standard input of the next. Clever, eh? So you can safely guess
that somescript.py reads data from its sys.stdin (which is what cat somefile.txt writes) and writes
some result to its sys.stdout (which is where sort gets its data).

A simple script (somescript.py) that uses sys.stdin is shown in Listing 11-1. The contents of the file
somefile.txt are shown in Listing 11-2.

Listing 11-1.  Simple Script That Counts the Words in sys.stdin

somescript.py
import sys
text = sys.stdin.read()
words = text.split()
wordcount = len(words)
print('Wordcount:', wordcount)

Listing 11-2.  A File Containing Some Nonsensical Text

Your mother was a hamster and your
father smelled of elderberries.

Here are the results of cat somefile.txt | python somescript.py:

Wordcount: 11

Chapter 11 ■ Files and Stuff

245

RANDOM ACCESS

In this chapter, I treat files only as streams—you can read data only from start to finish, strictly in order.
In fact, you can also move around a file, accessing only the parts you are interested in (called random
access) by using the two file-object methods seek and tell.

The method seek(offset[, whence]) moves the current position (where reading or writing is
performed) to the position described by offset and whence. offset is a byte (character) count.
whence defaults to io.SEEK_SET or 0, which means that the offset is from the beginning of the file
(the offset must be nonnegative). whence may also be set to io.SEEK_CUR or 1 (move relative to current
position; the offset may be negative) or io.SEEK_END or 2 (move relative to the end of the file). Consider
this example:

>>> f = open(r'C:\text\somefile.txt', 'w')
>>> f.write('01234567890123456789')
20
>>> f.seek(5)
5
>>> f.write('Hello, World!')
13
>>> f.close()
>>> f = open(r'C:\text\somefile.txt')
>>> f.read()
'01234Hello, World!89'

The method tell() returns the current file position, as in the following example:

>>> f = open(r'C:\text\somefile.txt')
>>> f.read(3)
'012'
>>> f.read(2)
'34'
>>> f.tell()
5

Reading and Writing Lines
Actually, what I’ve been doing until now is a bit impractical. I could just as well be reading in the lines of
a stream as reading letter by letter. You can read a single line (text from where you have come so far, up to
and including the first line separator you encounter) with the readline method. You can use this method
either without any arguments (in which case a line is simply read and returned) or with a nonnegative
integer, which is then the maximum number of characters that readline is allowed to read. So if some_file.
readline() returns 'Hello, World!\n', then some_file.readline(5) returns 'Hello'. To read all the lines
of a file and have them returned as a list, use the readlines method.

The method writelines is the opposite of readlines: give it a list (or, in fact, any sequence or iterable
object) of strings, and it writes all the strings to the file (or stream). Note that newlines are not added; you
need to add those yourself. Also, there is no writeline method because you can just use write.

Chapter 11 ■ Files and Stuff

246

Closing Files
You should remember to close your files by calling their close method. Usually, a file object is closed
automatically when you quit your program (and possibly before that), and not closing files you have been
reading from isn’t really that important. However, closing those files can’t hurt and might help to avoid
keeping the file uselessly “locked” against modification in some operating systems and settings. It also
avoids using up any quotas for open files your system might have.

You should always close a file you have written to because Python may buffer (keep stored temporarily
somewhere, for efficiency reasons) the data you have written, and if your program crashes for some reason,
the data might not be written to the file at all. The safe thing is to close your files after you’re finished with
them. If you want to reset the buffering and make your changes visible in the actual file on disk but you don’t
yet want to close the file, you can use the flush method. Note, however, that flush might not allow other
programs running at the same time to access the file because of locking considerations that depend on your
operating system and settings. Whenever you can conveniently close the file, that is preferable.

If you want to be certain that your file is closed, you could use a try/finally statement with the call to
close in the finally clause.

Open your file here
try:
 # Write data to your file
finally:
 file.close()

There is, in fact, a statement designed specifically for this kind of situation—the with statement.

with open("somefile.txt") as somefile:
 do_something(somefile)

The with statement lets you open a file and assign it to a variable name (in this case, somefile). You
then write data to your file (and, perhaps, do other things) in the body of the statement, and the file is
automatically closed when the end of the statement is reached, even if that is caused by an exception.

CONTEXT MANAGERS

The with statement is actually a quite general construct, allowing you to use so-called context
managers. A context manager is an object that supports two methods: __enter__ and __exit__.

The __enter__ method takes no arguments. It is called when entering the with statement, and the
return value is bound to the variable after the as keyword.

The __exit__ method takes three arguments: an exception type, an exception object, and an exception
traceback. It is called when leaving the method (with any exception raised supplied through the
parameters). If __exit__ returns false, any exceptions are suppressed.

Files may be used as context managers. Their __enter__ methods return the file objects themselves,
while their __exit__ methods close the files. For more information about this powerful, yet rather
advanced, feature, check out the description of context managers in the Python Reference Manual. Also
see the sections on context manager types and on contextlib in the Python Library Reference.

Chapter 11 ■ Files and Stuff

247

Using the Basic File Methods
Assume that somefile.txt contains the text in Listing 11-3. What can you do with it?

Listing 11-3.  A Simple Text File

Welcome to this file
There is nothing here except
This stupid haiku

Let’s try the methods you know, starting with read(n).

>>> f = open(r'C:\text\somefile.txt')
>>> f.read(7)
'Welcome'
>>> f.read(4)
' to '
>>> f.close()

Next up is read():

>>> f = open(r'C:\text\somefile.txt')
>>> print(f.read())
Welcome to this file
There is nothing here except
This stupid haiku
>>> f.close()

Here’s readline():

>>> f = open(r'C:\text\somefile.txt')
>>> for i in range(3):
 print(str(i) + ': ' + f.readline(), end='')
0: Welcome to this file
1: There is nothing here except
2: This stupid haiku
>>> f.close()

And here’s readlines():

>>> import pprint
>>> pprint.pprint(open(r'C:\text\somefile.txt').readlines())
['Welcome to this file\n',
'There is nothing here except\n',
'This stupid haiku']

Note that I relied on the file object being closed automatically in this example. Now let’s try writing,
beginning with write(string).

>>> f = open(r'C:\text\somefile.txt', 'w')
>>> f.write('this\nis no\nhaiku')
13
>>> f.close()

Chapter 11 ■ Files and Stuff

248

After running this, the file contains the text in Listing 11-4.

Listing 11-4.  The Modified Text File

this
is no
haiku

Finally, here’s writelines(list):

>>> f = open(r'C:\text\somefile.txt')
>>> lines = f.readlines()
>>> f.close()
>>> lines[1] = "isn't a\n"
>>> f = open(r'C:\text\somefile.txt', 'w')
>>> f.writelines(lines)
>>> f.close()

After running this, the file contains the text in Listing 11-5.

Listing 11-5.  The Text File, Modified Again

this
isn't a
haiku

Iterating over File Contents
Now you’ve seen some of the methods file objects present to us, and you’ve learned how to acquire such file
objects. One of the common operations on files is to iterate over their contents, repeatedly performing some
action as you go. There are many ways of doing this, and you can certainly just find your favorite and stick to
that. However, others may have done it differently, and to understand their programs, you should know all
the basic techniques.

In all the examples in this section, I use a fictitious function called process to represent the processing
of each character or line. Feel free to implement it in any way you like. Here’s one simple example:

def process(string):
 print('Processing:', string)

More useful implementations could do such things as storing data in a data structure, computing a sum,
replacing patterns with the re module, or perhaps adding line numbers.

Also, to try out the examples, you should set the variable filename to the name of some actual file.

One Character (or Byte) at a Time
One of the most basic (but probably least common) ways of iterating over file contents is to use the read
method in a while loop. For example, you might want to loop over every character (or, in binary mode, every
byte) in the file. You could do that as shown in Listing 11-6. If you’d rather read chunks of several characters
or bytes, supply the desired length to read.

Chapter 11 ■ Files and Stuff

249

Listing 11-6.  Looping over Characters with read

with open(filename) as f:
 char = f.read(1)
 while char:
 process(char)
 char = f.read(1)

This program works because when you have reached the end of the file, the read method returns an empty
string, but until then, the string always contains one character (and thus has the Boolean value true). As long
as char is true, you know that you aren’t finished yet.

As you can see, I have repeated the assignment char = f.read(1), and code repetition is generally
considered a bad thing. (Laziness is a virtue, remember?) To avoid that, we can use the while True/break
technique introduced in Chapter 5. The resulting code is shown in Listing 11-7.

Listing 11-7.  Writing the Loop Differently

with open(filename) as f:
 while True:
 char = f.read(1)
 if not char: break
 process(char)

As mentioned in Chapter 5, you shouldn’t use the break statement too often (because it tends to make the
code more difficult to follow). Even so, the approach shown in Listing 11-7 is usually preferred to that in
Listing 11-6, precisely because you avoid duplicated code.

One Line at a Time
When dealing with text files, you are often interested in iterating over the lines in the file, not each individual
character. You can do this easily in the same way as we did with characters, using the readline method
(described earlier, in the section “Reading and Writing Lines”), as shown in Listing 11-8.

Listing 11-8.  Using readline in a while Loop

with open(filename) as f:
 while True:
 line = f.readline()
 if not line: break
 process(line)

Reading Everything
If the file isn’t too large, you can just read the whole file in one go, using the read method with no parameters
(to read the entire file as a string) or the readlines method (to read the file into a list of strings, in which
each string is a line). Listings 11-9 and 11-10 show how easy it is to iterate over characters and lines when
you read the file like this. Note that reading the contents of a file into a string or a list like this can be useful
for other things besides iteration. For example, you might apply a regular expression to the string, or you
might store the list of lines in some data structure for further use.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5
http://dx.doi.org/10.1007/978-1-4842-0028-5_5

Chapter 11 ■ Files and Stuff

250

Listing 11-9.  Iterating over Characters with read

with open(filename) as f:
 for char in f.read():
 process(char)

Listing 11-10.  Iterating over Lines with readlines

with open(filename) as f:
 for line in f.readlines():
 process(line)

Lazy Line Iteration with fileinput
Sometimes you need to iterate over the lines in a very large file, and readlines would use too much
memory. You could use a while loop with readline, of course, but in Python, for loops are preferable
when they are available. It just so happens that they are in this case. You can use a method called lazy line
iteration—it’s lazy because it reads only the parts of the file actually needed (more or less).

You have already encountered fileinput in Chapter 10. Listing 11-11 shows how you might use it. Note
that the fileinput module takes care of opening the file. You just need to give it a file name.

Listing 11-11.  Iterating over Lines with fileinput

import fileinput
for line in fileinput.input(filename):
 process(line)

File Iterators
It’s time for the coolest (and the most common) technique of all. Files are actually iterable, which means that
you can use them directly in for loops to iterate over their lines. See Listing 11-12 for an example.

Listing 11-12.  Iterating over a File

with open(filename) as f:
 for line in f:
 process(line)

In these iteration examples, I have used the files as context managers, to make sure my files are closed.
Although this is generally a good idea, it’s not absolutely critical, as long as I don’t write to the file. If you are
willing to let Python take care of the closing, you could simplify the example even further, as shown in
Listing 11-13. Here, I don’t assign the opened file to a variable (like the variable f I’ve used in the other
examples), and therefore I have no way of explicitly closing it.

Listing 11-13.  Iterating over a File Without Storing the File Object in a Variable

for line in open(filename):
 process(line)

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 11 ■ Files and Stuff

251

Note that sys.stdin is iterable, just like other files, so if you want to iterate over all the lines in standard
input, you can use this form:

import sys
for line in sys.stdin:
 process(line)

Also, you can do all the things you can do with iterators in general, such as converting them into lists of
strings (by using list(open(filename))), which would simply be equivalent to using readlines.

>>> f = open('somefile.txt', 'w')
>>> print('First', 'line', file=f)
>>> print('Second', 'line', file=f)
>>> print('Third', 'and final', 'line', file=f)
>>> f.close()
>>> lines = list(open('somefile.txt'))
>>> lines
['First line\n', 'Second line\n', 'Third and final line\n']
>>> first, second, third = open('somefile.txt')
>>> first
'First line\n'
>>> second
'Second line\n'
>>> third
'Third and final line\n'

In this example, it’s important to note the following:

•	 I’ve used print to write to the file. This automatically adds newlines after the strings
I supply.

•	 I use sequence unpacking on the opened file, putting each line in a separate variable.
(This isn’t exactly common practice because you usually won’t know the number of
lines in your file, but it demonstrates the “iterability” of the file object.)

•	 I close the file after having written to it, to ensure that the data is flushed to disk.
(As you can see, I haven’t closed it after reading from it. Sloppy, perhaps, but
not critical.)

A Quick Summary
In this chapter, you’ve seen how to interact with the environment through files and file-like objects, one of
the most important techniques for I/O in Python. Here are some of the highlights from the chapter:

File-like objects: A file-like object is (informally) an object that supports a set of
methods such as read and readline (and possibly write and writelines).

Opening and closing files: You open a file with the open function, by supplying
a file name. If you want to make sure your file is closed, even if something goes
wrong, you can use the with statement.

Chapter 11 ■ Files and Stuff

252

Modes and file types: When opening a file, you can also supply a mode, such
as 'r' for read mode or 'w' for write mode. By appending 'b' to your mode,
you can open files as binary files and turn off Unicode encoding and newline
substitution.

Standard streams: The three standard files (stdin, stdout, and stderr, found
in the sys module) are file-like objects that implement the UNIX standard I/O
mechanism (also available in Windows).

Reading and writing: You read from a file or file-like object using the method
read. You write with the method write.

Reading and writing lines: You can read lines from a file using readline and
readlines. You can write files with writelines.

Iterating over file contents: There are many ways of iterating over file contents.
It is most common to iterate over the lines of a text file, and you can do this by
simply iterating over the file itself. There are other methods too, such as using
readlines, that are compatible with older versions of Python.

New Functions in This Chapter

Function Description

open(name, ...) Opens a file and returns a file object

What Now?
So now you know how to interact with the environment through files, but what about interacting with
the user? So far we’ve used only input and print, and unless the user writes something in a file that your
program can read, you don’t really have any other tools for creating user interfaces. That changes in the next
chapter, where I cover graphical user interfaces, with windows, buttons, and the like.

253© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_12

CHAPTER 12

Graphical User Interfaces

In this rather short chapter, you’ll learn the basics of how to make graphical user interfaces (GUIs) for your
Python programs—you know, windows with buttons and text fields and stuff like that. The de facto standard
GUI toolkit for Python is Tkinter, which ships as part of the standard Python distribution. Several other
toolkits are available, however. This has its advantages (greater freedom of choice) and drawbacks (others
can’t use your programs unless they have the same GUI toolkit installed). Fortunately, there is no conflict
between the various GUI toolkits available for Python, so you can install as many different GUI toolkits as
you want.

This chapter gives a brief introduction to using Tkinter, and we’ll build on this in Chapter 28. Tkinter is
easy to use, but there’s a lot to learn if you want to use all of its features. I’ll only scratch the surface here to
get you going; for further details, you should consult the section on graphical user interfaces in the standard
library reference. There you’ll find documentation for Tkinter, as well as links to sites with more in-depth
information and suggestions for other GUI packages to use.

Building a Sample GUI Application
To demonstrate using Tkinter, I will show you how to build a simple GUI application. Your task is to write a
basic program that enables you to edit text files. We aren’t going to write a full-fledged text editor but instead
stick to the essentials. After all, the goal is to demonstrate the basic mechanisms of GUI programming in
Python.

The requirements for this minimal text editor are as follows:

•	 It must allow you to open text files, given their file names.

•	 It must allow you to edit the text files.

•	 It must allow you to save the text files.

•	 It must allow you to quit.

When writing a GUI program, it’s often useful to draw a sketch of how you want it to look. Figure 12-1 shows
a simple layout that satisfies the requirements for our text editor.

http://dx.doi.org/10.1007/978-1-4842-0028-5_28

Chapter 12 ■ Graphical User Interfaces

254

The elements of the interface can be used as follows:

•	 Type a file name in the text field to the left of the buttons and click Open to
open a file.

The text contained in the file is put in the text field at the bottom.

•	 You can edit the text to your heart’s content in the large text field.

•	 If and when you want to save your changes, click the Save button, which again uses
the text field containing the file name and writes the contents of the large text field to
the file.

•	 There is no Quit button—we’ll just use the Quit command from the default Tkinter
menus.

This might seem like a slightly daunting task, but it’s really a piece of cake.

Initial Exploration
To begin with, you must import tkinter. To keep its namespace separate but save some typing, you might
want to rename it.

import tkinter as tk

There’s not much harm in just importing all of its contents, though, if you prefer. For some initial exploration,
let’s just use the interactive interpreter.

>>> from tkinter import *

<Enter file name here>

<Edit text here>

Open Save

Figure 12-1.  A sketch of the text editor

Chapter 12 ■ Graphical User Interfaces

255

To start up the GUI, we can create a top-level component, or widget, which will act as our main window. We
do this by instantiating a Tk object.

>>> top = Tk()

At this point, a window should appear. In an ordinary program, we would insert a call to the function
mainloop here to enter into the Tkinter main event loop, rather than simply exiting the program. There’s no
need for that in the interactive interpreter, but feel free to try.

>>> mainloop()

The interpreter will seem to hang while the GUI is still working. To keep going, quit the GUI and restart the
interpreter.

Various widgets are available under rather obvious names. For example, to create a button, you
instantiate the Button class. If there is no Tk instance, creating a widget will also instantiate Tk, so you can
just jump right in.

>>> from tkinter import *
>>> btn = Button()

The button won’t be visible at this point—you need to use a layout manager (also known as a geometry
manager) to tell Tkinter where to place it. We’ll be using the pack manager, which in its simplest form simply
involves calling the pack method.

>>> btn.pack()

Widgets have various properties we can use to modify their appearance and behavior. The properties are
available like dictionary fields, so if we want to give our button some text, all it takes is an assignment.

>>> btn['text'] = 'Click me!'

By now, you should have a window looking somewhat like this:

Adding some behavior to the button is also quite straightforward.

>>> def clicked():
... print('I was clicked!')
...
>>> btn['command'] = clicked

If you click the button now, you should see the message printed out.
Rather than individual assignments, you can use the config method to set several properties at once.

>>> btn.config(text='Click me!', command=clicked)

You can also configure the widget using its constructor.

>>> Button(text='Click me too!', command=clicked).pack()

Chapter 12 ■ Graphical User Interfaces

256

Layout
When we call pack on a widget, it is laid out within its parent widget, or master. The master widget may be
supplied as an optional first argument to the constructor; if we don’t supply one, the main top-level window
is used, as in the following snippet:

Label(text="I'm in the first window!").pack()
second = Toplevel()
Label(second, text="I'm in the second window!").pack()

The Toplevel class represents a top-level window beyond the main one, and Label is simply a text label.
Without any parameters, pack will simply stack widgets in a single, centered column, starting at the top

of the window. For example, the following will result in a tall, thin window with a single column of buttons:

for i in range(10):
 Button(text=i).pack()

Luckily, you can adjust the positioning and stretching of your widgets. The side you pack a widget on is given
by the side parameter, to which you supply LEFT, RIGHT, TOP, or BOTTOM. If you want the widget to fill out the
space assigned to it in the x- or y-direction, you specify a fill value of X, Y, or BOTH. If you want it to grow as
the parent (in this case, the window) grows, you can set expand to true. There are other options as well, for
specifying anchoring and padding, though I won’t be using them here. To get a quick overview, you can use
the following:

>>> help(Pack.config)

There are other layout manager options, which might suit your taste better, namely, grid and place. You call
these methods on the widgets you’re laying out, just like with pack. To avoid trouble, you should stick to a
single layout manager for one container, such as a window.

The grid method lets you lay out objects by placing them in the cells of an invisible table; you do this
by specifying a row and column and possibly a rowspan or columnspan, if the widgets span multiple rows or
columns. The place method lets you place widgets manually, by specifying the coordinates x and y, and
the widgets’ height and weight. This is rarely a good idea but might be needed on occasion. Both of these
geometry managers have additional parameters as well, which you can find by using the following:

>>> help(Grid.configure)
>>> help(Place.config)

Event Handling
As you’ve seen, we can supply an action for a button to take by setting the command property. This is a
specialized form of event handling, for which Tkinter also has a more general mechanism: the bind method.
You call this on the widget you want to handle a given kind of event, specifying the name of the event and a
function to use. Here’s an example:

>>> from tkinter import *
>>> top = Tk()
>>> def callback(event):
... print(event.x, event.y)
...
>>> top.bind('<Button-1>', callback)
'4322424456callback'

Chapter 12 ■ Graphical User Interfaces

257

Here, <Button-1> is the name for a mouse click (or equivalent) using the left button (button 1). We bind it
to the callback function, which is called whenever we click inside the top window. An event object is passed
along to the callback, and it has various properties depending on the kind of event. For a mouse click, for
example, it provides the x and y coordinates, which are printed in this example. Many other kinds of events
are available. You can find a list by using

>>> help(Tk.bind)

and can find further information by consulting the sources described earlier.

The Final Program
At this point, we have roughly what we need to write the program. We just need to figure out the names
of the widgets used for small text fields and larger text areas. A quick look at the documentation tells us
that Entry is what we want for the single-line text fields. A multi-line, scrolled text area can be constructed
by combining Text and Scrollbar, but there’s already an implementation available in the tkinter.
scrolledtext module. The contents of an Entry can be extracted using its get method, while for the
ScrolledText object, we will use the delete and insert methods, with appropriate arguments to indicate
locations in the text. In our case, we’ll use '1.0' to specify the first line and the zeroth character (i.e., before
the first character), END for the end of the text, and INSERT for the current insertion point. The resulting
program is shown in Listing 12-1 and Figure 12-2.

Listing 12-1.  Simple GUI Text Editor

from tkinter import *
from tkinter.scrolledtext import ScrolledText

def load():
 with open(filename.get()) as file:
 contents.delete('1.0', END)
 contents.insert(INSERT, file.read())

def save():
 with open(filename.get(), 'w') as file:
 file.write(contents.get('1.0', END))

top = Tk()
top.title("Simple Editor")

contents = ScrolledText()
contents.pack(side=BOTTOM, expand=True, fill=BOTH)

filename = Entry()
filename.pack(side=LEFT, expand=True, fill=X)

Button(text='Open', command=load).pack(side=LEFT)
Button(text='Save', command=save).pack(side=LEFT)

mainloop()

Chapter 12 ■ Graphical User Interfaces

258

You can try the editor using the following steps:

	 1.	 Run the program. You should get a window like the one in the previous runs.

	 2.	 Type something in the large text area (for example, Hello, world!).

	 3.	 Type a file name in the small text field (for example, hello.txt). Make sure that
this file does not already exist or it will be overwritten.

	 4.	 Click the Save button.

	 5.	 Quit the program.

	 6.	 Restart the program.

	 7.	 Type the same file name in the little text field.

	 8.	 Click the Open button. The text of the file should reappear in the large text area.

	 9.	 Edit the file to your heart’s content, and save it again.

Now you can keep opening, editing, and saving until you grow tired of that. Then you can start thinking of
improvements. How about allowing your program to download files with the urllib module, for example?

You might also consider using more object-oriented design in your programs, of course. For example,
you may want to manage the main application as an instance of a custom application class with methods for
setting up the various widgets and bindings. See Chapter 28 for some examples. And as with any GUI package,
Tkinter has a great selection of widgets and other classes for you to use. You should use help(tkinter) or
consult the documentation for information on any graphical element you would like to use.

Figure 12-2.  The final text editor

http://dx.doi.org/10.1007/978-1-4842-0028-5_28

Chapter 12 ■ Graphical User Interfaces

259

Using Something Else
The basics of most GUI toolkits are roughly the same. Unfortunately, however, when learning how to use
a new package, it takes time to find your way through all the details that enable you to do exactly what you
want. So you should take your time before deciding which package you want to work with (see, for example,
the section on other GUI packages in the Python standard library reference) and then immerse yourself in its
documentation and start writing code. I hope this chapter has provided the basic concepts you need to make
sense of that documentation.

A Quick Summary
Once again, let’s review what we’ve covered in this chapter:

Graphical user interfaces (GUIs): GUIs are useful in making your programs
more user friendly. Not all programs need them, but whenever your program
interacts with a user, a GUI is probably helpful.

Tkinter: Tkinter is a mature and widely available cross-platform GUI toolkit for
Python.

Layout: You can position components quite simply by specifying their geometry
directly. However, to make them behave properly when their containing window
is resized, you will need to use some sort of layout manager.

Event handling: Actions performed by the user trigger events in the GUI toolkit.
To be of any use, your program will probably be set up to react to some of these
events; otherwise, the user won’t be able to interact with it. In Tkinter, event
handlers are added to components with the bind method.

What Now?
That’s it. You now know how to write programs that can interact with the outside world through files and
GUIs. In the next chapter, you learn about another important component of many program systems:
databases.

261© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_13

CHAPTER 13

Database Support

Using simple, plain-text files can get you only so far. Yes, they can get you very far, but at some point, you
may need some extra functionality. You may want some automated serialization, and you can turn to shelve
(see Chapter 10) and pickle (a close relative of shelve). But you may want features that go beyond even this.
For example, you might want to have automated support for concurrent access to your data, that is, to allow
several users to read from and write to your disk-based data without causing any corrupted files or the like.
Or you may want to be able to perform complex searches using many data fields or properties at the same
time, rather than the simple single-key lookup of shelve. There are plenty of solutions to choose from, but
if you want this to scale to large amounts of data and you want the solution to be easily understandable by
other programmers, choosing a relatively standard form of database is probably a good idea.

This chapter discusses the Python Database API, a standardized way of connecting to SQL databases,
and demonstrates how to execute some basic SQL using this API. The last section also discusses some
alternative database technology.

I won’t be giving you a tutorial on relational databases or the SQL language. The documentation for
most databases (such as PostgreSQL or MySQL, or, the one used in this chapter, SQLite) should cover
what you need to know. If you haven’t used relational databases before, you might want to check out
www.sqlcourse.com (or just do a web search on the subject) or Beginning SQL Queries, 2nd ed., by Clare
Churcher (Apress, 2016).

The simple database used throughout this chapter (SQLite) is, of course, not the only choice—by
far. There are several popular commercial choices (such as Oracle or Microsoft SQL Server), as well as
some solid and widespread open source databases (such as MySQL, PostgreSQL, and Firebird). For a list
of some other databases supported by Python packages, check out https://wiki.python.org/moin/
DatabaseInterfaces. Relational (SQL) databases aren’t the only kind around, of course. There are object
databases such as the Zope Object Database (ZODB, http://zodb.org), compact table-based ones such
as Metakit (http://equi4.com/metakit), or even simpler key-value databases, such as the UNIX DBM
(https://docs.python.org/3/library/dbm.html). There is also a wide variety of the increasingly popular
NoSQL databases, such as MongoDB (http://mongodb.com), Cassandra (http://cassandra.apache.org),
and Redis (http://redis.io), all of which can be accessed from Python.

While this chapter focuses on rather low-level database interaction, you can find several high-level
libraries to help you abstract away some of the grind (see, for example, http://sqlalchemy.org or
http://sqlobject.org, or search the Web for other so-called object-relational mappers for Python).

The Python Database API
As I’ve mentioned, you can choose from various SQL databases, and many of them have corresponding
client modules in Python (some databases even have several). Most of the basic functionality of all the
databases is the same, so a program written to use one of them might easily—in theory—be used with

http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://www.sqlcourse.com/
https://wiki.python.org/moin/DatabaseInterfaces
https://wiki.python.org/moin/DatabaseInterfaces
http://zodb.org/
http://equi4.com/metakit
https://docs.python.org/3/library/dbm.html
http://mongodb.com/
http://cassandra.apache.org/
http://redis.io/
http://sqlalchemy.org
http://sqlobject.org/

Chapter 13 ■ Database Support

262

another. The problem with switching between different modules that provide the same functionality
(more or less) is usually that their interfaces (APIs) are different. In order to solve this problem for database
modules in Python, a standard Database API (DB API) has been agreed upon. The current version of the
API (2.0) is defined in PEP 249, Python Database API Specification v2.0 (available from http://python.org/
peps/pep-0249.html).

This section gives you an overview of the basics. I won’t cover the optional parts of the API, because
they don’t apply to all databases. You can find more information in the PEP mentioned or in the database
programming guide in the official Python Wiki (available from http://wiki.python.org/moin/
DatabaseProgramming). If you’re not really interested in all the API details, you can skip this section.

Global Variables
Any compliant database module (compliant, that is, with the DB API, version 2.0) must have three global
variables, which describe the peculiarities of the module. The reason for this is that the API is designed to
be very flexible and to work with several different underlying mechanisms without too much wrapping. If
you want your program to work with several different databases, this can be a nuisance, because you need
to cover many different possibilities. A more realistic course of action, in many cases, would be to simply
check these variables to see that a given database module is acceptable to your program. If it isn’t, you could
simply exit with an appropriate error message, for example, or raise some exception. The global variables are
summarized in Table 13-1.

The API level (apilevel) is simply a string constant, giving the API version in use. According to the DB
API version 2.0, it may have either the value '1.0' or the value '2.0'. If the variable isn’t there, the module
is not 2.0-compliant, and you should (according to the API) assume that the DB API version 1.0 is in effect. It
also probably wouldn’t hurt to write your code to allow other values here (who knows when, say, version 3.0
of the DB API will come out?).

The thread-safety level (threadsafety) is an integer ranging from 0 to 3, inclusive. 0 means that threads
may not share the module at all, and 3 means that the module is completely thread-safe. A value of 1 means
that threads may share the module itself but not connections (see “Connections and Cursors” later in this
chapter), and 2 means that threads may share modules and connections but not cursors. If you don’t use
threads (which, most of the time, you probably won’t), you don’t have to worry about this variable at all.

The parameter style (paramstyle) indicates how parameters are spliced into SQL queries when
you make the database perform multiple similar queries. The value 'format' indicates standard string
formatting (using basic format codes), so you insert %s where you want to splice in parameters, for example.
The value 'pyformat' indicates extended format codes, as used with old-fashioned dictionary splicing, such
as %(foo)s. In addition to these Pythonic styles, there are three ways of writing the splicing fields: 'qmark'
means that question marks are used, 'numeric' means fields of the form :1 or :2 (where the numbers are
the numbers of the parameters), and 'named' means fields like :foobar, where foobar is a parameter name.
If parameter styles seem confusing, don’t worry. For basic programs, you won’t need them, and if you need
to understand how a specific database interface deals with parameters, the relevant documentation will
probably explain it.

Table 13-1.  The Module Properties of the Python DB API

Variable Name Use

apilevel The version of the Python DB API in use

threadsafety How thread-safe the module is

paramstyle Which parameter style is used in the SQL
queries

http://python.org/peps/pep-0249.html
http://python.org/peps/pep-0249.html
http://wiki.python.org/moin/DatabaseProgramming
http://wiki.python.org/moin/DatabaseProgramming

Chapter 13 ■ Database Support

263

Exceptions
The API defines several exceptions to make fine-grained error handling possible. However, they’re defined
in a hierarchy, so you can also catch several types of exceptions with a single except block. (Of course, if you
expect everything to work nicely and you don’t mind having your program shut down in the unlikely event of
something going wrong, you can just ignore the exceptions altogether.)

The exception hierarchy is shown in Table 13-2. The exceptions should be available globally in the given
database module. For more in-depth descriptions of these exceptions, see the API specification (the PEP
mentioned previously).

Connections and Cursors
In order to use the underlying database system, you must first connect to it. For this you use the aptly named
function connect. It takes several parameters; exactly which depends on the database. The API defines the
parameters in Table 13-3 as a guideline. It recommends that they be usable as keyword arguments and that
they follow the order given in the table. The arguments should all be strings.

Table 13-2.  Exceptions Specified in the Python DB API

Exception Superclass Description

StandardError Generic superclass of all exceptions

Warning StandardError Raised if a nonfatal problem occurs

Error StandardError Generic superclass of all error conditions

InterfaceError Error Errors relating to the interface, not the database

DatabaseError Error Superclass for errors relating to the database

DataError DatabaseError Problems related to the data; e.g., values out of range

OperationalError DatabaseError Errors internal to the operation of the database

IntegrityError DatabaseError Relational integrity compromised; e.g., key check fails

InternalError DatabaseError Internal errors in the database; e.g., invalid cursor

ProgrammingError DatabaseError User programming error; e.g., table not found

NotSupportedError DatabaseError An unsupported feature (e.g., rollback) requested

Table 13-3.  Common Parameters of the connect Function

Parameter Name Description Optional?

dsn Data source name. Specific
meaning database dependent.

No

user User name. Yes

password User password. Yes

host Host name. Yes

database Database name. Yes

Chapter 13 ■ Database Support

264

You’ll see specific examples of using the connect function in the section “Getting Started” later in this
chapter, as well as in Chapter 26.

The connect function returns a connection object. This represents your current session with the
database. Connection objects support the methods shown in Table 13-4.

The rollback method may not be available, because not all databases support transactions. (Transactions
are just sequences of actions.) If it exists, it will “undo” any transactions that have not been committed.

The commit method is always available, but if the database doesn’t support transactions, it doesn’t
actually do anything. If you close a connection and there are still transactions that have not been committed,
they will implicitly be rolled back—but only if the database supports rollbacks! So if you don’t want to rely on
this, you should always commit before you close your connection. If you commit, you probably don’t need to
worry too much about closing your connection; it’s automatically closed when it’s garbage-collected. If you
want to be on the safe side, though, a call to close won’t cost you that many keystrokes.

The cursor method leads us to another topic: cursor objects. You use cursors to execute SQL queries
and to examine the results. Cursors support more methods than connections and probably will be quite a bit
more prominent in your programs. Table 13-5 gives an overview of the cursor methods, and Table 13-6 gives
an overview of the attributes.

Table 13-4.  Connection Object Methods

Method Name Description

close() Closes the connection. Connection object and its cursors are now unusable.

commit() Commits pending transactions, if supported; otherwise, does nothing.

rollback() Rolls back pending transactions (may not be available).

cursor() Returns a cursor object for the connection.

Table 13-5.  Cursor Object Methods

Name Description

callproc(name[, params]) Calls a named database procedure with given name and parameters
(optional).

close() Closes the cursor. Cursor is now unusable.

execute(oper[, params]) Executes a SQL operation, possibly with parameters.

executemany(oper, pseq) Executes a SQL operation for each parameter set in a sequence.

fetchone() Fetches the next row of a query result set as a sequence, or None.

fetchmany([size]) Fetches several rows of a query result set. Default size is arraysize.

fetchall() Fetches all (remaining) rows as a sequence of sequences.

nextset() Skips to the next available result set (optional).

setinputsizes(sizes) Used to predefine memory areas for parameters.

setoutputsize(size[, col]) Sets a buffer size for fetching big data values.

http://dx.doi.org/10.1007/978-1-4842-0028-5_26

Chapter 13 ■ Database Support

265

Some of these methods will be explained in more detail in the upcoming text, while some (such as
setinputsizes and setoutputsizes) will not be discussed. Consult the PEP for more details.

Types
In order to interoperate properly with the underlying SQL databases, which may place various requirements
on the values inserted into columns of certain types, the DB API defines certain constructors and constants
(singletons) used for special types and values. For example, if you want to add a date to a database, it should
be constructed with (for example) the Date constructor of the corresponding database connectivity module.
That allows the connectivity module to perform any necessary transformations behind the scenes. Each
module is required to implement the constructors and special values shown in Table 13-7. Some modules
may not be entirely compliant. For example, the sqlite3 module (discussed next) does not export the
special values (STRING through ROWID) in Table 13-7.

SQLite and PySQLite
As mentioned previously, many SQL database engines are available, with corresponding Python modules.
Most of these database engines are meant to be run as server programs and require administrator privileges
even to install them. In order to lower the threshold for playing around with the Python DB API, I’ve chosen
to use a tiny database engine called SQLite, which doesn’t need to be run as a stand-alone server and which
can work directly on local files, instead of with some centralized database storage mechanism.

Table 13-6.  Cursor Object Attributes

Name Description

description Sequence of result column descriptions. Read-only.

rowcount The number of rows in the result. Read-only.

arraysize How many rows to return in fetchmany. Default is 1.

Table 13-7.  DB API Constructors and Special Values

Name Description

Date(year, month, day) Creates an object holding a date value

Time(hour, minute, second) Creates an object holding a time value

Timestamp(y, mon, d, h, min, s) Creates an object holding a timestamp value

DateFromTicks(ticks) Creates an object holding a date value from ticks since epoch

TimeFromTicks(ticks) Creates an object holding a time value from ticks

TimestampFromTicks(ticks) Creates an object holding a timestamp value from ticks

Binary(string) Creates an object holding a binary string value

STRING Describes string-based column types (such as CHAR)

BINARY Describes binary columns (such as LONG or RAW)

NUMBER Describes numeric columns

DATETIME Describes date/time columns

ROWID Describes row ID columns

Chapter 13 ■ Database Support

266

In recent Python versions (from 2.5) SQLite has the advantage that a wrapper for it (PySQLite, in the
form of the sqlite3 module) is included in the standard library. Unless you’re compiling Python from
source yourself, chances are that the database itself is also included. You might want to just try the program
snippets in the section “Getting Started.” If they work, you don’t need to bother with installing PySQLite and
SQLite separately.

■■ Note  If you’re not using the standard library version of PySQLite, you may need to modify the import
statement. Refer to the relevant documentation for more information.

GETTING PYSQLITE

If you are using an older version of Python, you will need to install PySQLite before you can use the
SQLite database. You can download it from https://github.com/ghaering/pysqlite.

For Linux systems with package manager systems, chances are you can get PySQLite and SQLite
directly from the package manager. You could also use Python’s own package manager, pip. You can
also get the source packages for PySQLite and SQLite and compile them yourself.

If you’re using a recent version of Python, you will most certainly have PySQLite. If anything is missing,
it will be the database itself, SQLite (but again, that will probably be available as well). You can get
the sources from the SQLite web page, http://sqlite.org. (Make sure you get one of the source
packages where automatic code generation has already been performed.) Compiling SQLite is basically
a matter of following the instructions in the included README file. When subsequently compiling
PySQLite, you need to make sure that the compilation process can access the SQLite libraries and
include files. If you’ve installed SQLite in some standard location, it may well be that the setup script in
the PySQLite distribution can find it on its own. In that case, you simply need to execute the following
commands:

python setup.py build
python setup.py install

You could simply use the latter command, which will perform the build automatically. If this gives you
heaps of error messages, chances are the installation script didn’t find the required files. Make sure
you know where the include files and libraries are installed, and supply them explicitly to the install
script. Let’s say I compiled SQLite in place in a directory called /home/mlh/sqlite/current; then the
header files could be found in /home/mlh/sqlite/current/src and the library in /home/mlh/sqlite/
current/build/lib. In order to let the installation process use these paths, edit the setup script,
setup.py. In this file you’ll want to set the variables include_dirs and library_dirs.

include_dirs = ['/home/mlh/sqlite/current/src']
library_dirs = ['/home/mlh/sqlite/current/build/lib']

After rebinding these variables, the install procedure described earlier should work without errors.

https://github.com/ghaering/pysqlite
http://sqlite.org/

Chapter 13 ■ Database Support

267

Getting Started
You can import SQLite as a module, under the name sqlite3 (if you are using the one in the Python
standard library). You can then create a connection directly to a database file—which will be created if it
does not exist—by supplying a file name (which can be a relative or absolute path to the file).

>>> import sqlite3
>>> conn = sqlite3.connect('somedatabase.db')

You can then get a cursor from this connection.

>>> curs = conn.cursor()

This cursor can then be used to execute SQL queries. Once you’re finished, if you’ve made any changes,
make sure you commit them, so they’re actually saved to the file.

>>> conn.commit()

You can (and should) commit each time you’ve modified the database, not just when you’re ready to close it.
When you are ready to close it, just use the close method.

>>> conn.close()

A Sample Database Application
As an example, I’ll demonstrate how to construct a little nutrient database, based on data from the United
States Department of Agriculture (USDA) Agricultural Research Service (https://www.ars.usda.gov). Their
links tend to move around a bit, but you should be able to find the relevant dataset as follows. On their web
page, find your way to the Databases and Datasets page (should be available from the Research drop-down
menu), and follow the link to the Nutrient Data Laboratory. On that page, you should find a further link to
the USDA National Nutrient Database for Standard Reference, where you should find a lot of different data
files in plain-text (ASCII) format, just the way we like it. Follow the Download link, and download the zip
file referenced by the ASCII link under the heading “Abbreviated.” You should now get a zip file containing
a text file named ABBREV.txt, along with a PDF file describing its contents. If you have trouble finding this
particular file, any old data will do. Just modify the source code to suit.

The data in the ABBREV.txt file has one data record per line, with the fields separated by caret (^)
characters. The numeric fields contain numbers directly, while the textual fields have their string values
“quoted” with a tilde (~) on each side. Here is a sample line, with parts deleted for brevity:

~07276~^~HORMEL SPAM ... PORK W/ HAM MINCED CND~^ ... ^~1 serving~^^~~^0

Parsing such a line into individual fields is a simple as using line.split('^'). If a field starts with a tilde,
you know it’s a string and can use field.strip('~') to get its contents. For the other (numeric) fields,
float(field) should do the trick, except, of course, when the field is empty. The program developed in the
following sections will transfer the data in this ASCII file into your SQL database and let you perform some
(semi-)interesting queries on them.

■■ Note T his sample program is intentionally simple. For a slightly more advanced example of database use
in Python, see Chapter 26.

https://www.ars.usda.gov/
http://dx.doi.org/10.1007/978-1-4842-0028-5_26

Chapter 13 ■ Database Support

268

Creating and Populating Tables
To actually create the tables of the database and populate them, writing a completely separate one-shot
program might be the easiest solution. You can run this program once and then forget about both it and the
original data source (the ABBREV.txt file), although keeping them around is probably a good idea.

The program shown in Listing 13-1 creates a table called food with some appropriate fields, reads the
file ABBREV.txt, parses it (by splitting the lines and converting the individual fields using a utility function,
convert), and inserts values read from the text field into the database using a SQL INSERT statement in a call
to curs.execute.

■■ Note  It would have been possible to use curs.executemany, supplying a list of all the rows extracted
from the data file. This would have given a minor speedup in this case but might have given a more substantial
speedup if a networked client/server SQL system were used.

Listing 13-1.  Importing Data into the Database (importdata.py)

import sqlite3

def convert(value):
 if value.startswith('~'):
 return value.strip('~')
 if not value:
 value = '0'
 return float(value)

conn = sqlite3.connect('food.db')
curs = conn.cursor()

curs.execute('''
CREATE TABLE food (

id TEXT PRIMARY KEY,
desc TEXT,
water FLOAT,
kcal FLOAT,
protein FLOAT,
fat FLOAT,
ash FLOAT,
carbs FLOAT,
fiber FLOAT,
sugar FLOAT
)
''')
query = 'INSERT INTO food VALUES (?,?,?,?,?,?,?,?,?,?)'
field_count = 10

Chapter 13 ■ Database Support

269

for line in open('ABBREV.txt'):
 fields = line.split('^')
 vals = [convert(f) for f in fields[:field_count]]
 curs.execute(query, vals)

conn.commit()
conn.close()

■■ Note  In Listing 13-1, I use the “qmark” version of paramstyle, that is, a question mark as a field marker.
If you’re using an older version of PySQLite, you may need to use % characters instead.

When you run this program (with ABBREV.txt in the same directory), it will create a new file called food.db,
containing all the data of the database.

I encourage you to play around with this example, using other inputs, adding print statements, and
the like.

Searching and Dealing with Results
Using the database is really simple. Again, you create a connection and get a cursor from that connection.
Execute the SQL query with the execute method and extract the results with, for example, the fetchall
method. Listing 13-2 shows a tiny program that takes a SQL SELECT condition as a command-line argument
and prints out the returned rows in a record format. You could try it out with a command line like the
following:

$ python food_query.py "kcal <= 100 AND fiber >= 10 ORDER BY sugar"

You may notice a problem when you run this. The first row, raw orange peel, seems to have no sugar at
all. That’s because the field is missing in the data file. You could improve the import script to detect this
condition, and insert None instead of a real value, to indicate missing data. Then you could use a condition
such as the following:

"kcal <= 100 AND fiber >= 10 AND sugar ORDER BY sugar"

This requires the sugar field to have real data in any returned rows. As it happens, this strategy will work with
the current database, as well, where this condition will discard rows where the sugar level is zero.

You might want to try a condition that searches for a specific food item, using an ID, such as 08323 for
Cocoa Pebbles. The problem is that SQLite handles its values in a rather nonstandard fashion. Internally,
all values are, in fact, strings, and some conversion and checking goes on between the database and the
Python API. Usually, this works just fine, but this is an example of where you might run into trouble. If you
supply the value 08323, it will be interpreted as the number 8323 and subsequently converted into the
string "8323"—an ID that doesn’t exist. One might have expected an error message here, rather than this
surprising and rather unhelpful behavior, but if you are careful and use the string "08323" in the first place,
you’ll be fine.

Chapter 13 ■ Database Support

270

Listing 13-2.  Food Database Query Program (food_query.py)

import sqlite3, sys

conn = sqlite3.connect('food.db')
curs = conn.cursor()

query = 'SELECT * FROM food WHERE ' + sys.argv[1]
print(query)
curs.execute(query)
names = [f[0] for f in curs.description]
for row in curs.fetchall():
 for pair in zip(names, row):
 print('{}: {}'.format(*pair))
 print()

■■ Caution T his program takes input from the user and splices it into an SQL query. This is fine as long as the
user is you and you don’t enter anything too weird. However, using such inputs to sneakily insert malicious SQL
code to mess with the database is a common way to crack computer systems, known as SQL injection. Don’t
expose your database—or anything else—to raw user input, unless you know what you’re doing.

A Quick Summary
This chapter has given a rather brief introduction to making Python programs interact with relational
databases. It’s brief because if you master Python and SQL, then the coupling between the two, in the form
of the Python DB API, is quite easy to master. Here are some of the concepts covered in this chapter:

The Python DB API: This API provides a simple, standardized interface to which
database wrapper modules should conform, to make it easier to write programs
that will work with several different databases.

Connections: A connection object represents the communication link with the
SQL database. From it, you can get individual cursors, using the cursor method.
You also use the connection object to commit or roll back transactions. After
you’re finished with the database, the connection can be closed.

Cursors: A cursor is used to execute queries and to examine the results.
Resulting rows can be retrieved one by one or many (or all) at once.

Types and special values: The DB API specifies the names of a set of
constructors and special values. The constructors deal with date and time
objects, as well as binary data objects. The special values represent the types of
the relational database, such as STRING, NUMBER, and DATETIME.

SQLite: This is a small, embedded SQL database, whose Python wrapper is
included in the standard Python distribution under the name sqlite3. It’s fast
and simple to use and does not require a separate server to be set up.

Chapter 13 ■ Database Support

271

New Functions in This Chapter

Function Description

connect(...) Connect to a database and return a connection object1

What Now?
Persistence and database handling are important parts of many, if not most, big program systems. Another
component shared by a great number of such systems is a network, which is dealt with in the next chapter.

1The parameters to the connect function are database dependent.

273© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_14

CHAPTER 14

Network Programming

In this chapter, I give you a sample of the various ways in which Python can help you write programs that
use a network, such as the Internet, as an important component. Python is a very powerful tool for network
programming. Many libraries for common network protocols and for various layers of abstractions on top of
them are available, so you can concentrate on the logic of your program, rather than on shuffling bits across
wires. Also, it’s easy to write code for handling various protocol formats that may not have existing code,
because Python is really good at tackling patterns in byte streams (you’ve already seen this in dealing with
text files in various ways).

Because Python has such an abundance of network tools available for you to use, I can only give you
a brief peek at its networking capabilities here. You can find some other examples elsewhere in this book.
Chapter 15 includes a discussion of web-oriented network programming, and several of the projects in
later chapters use networking modules to get the job done. If you want to know even more about network
programming in Python, I can heartily recommend John Goerzen’s Foundations of Python Network
Programming (Apress, 2004), which deals with the subject very thoroughly.

In this chapter, I give you an overview of some of the networking modules available in the Python
standard library. Then comes a discussion of the SocketServer class and its friends, followed by a brief look
at the various ways in which you can handle several connections at once. Finally, I give you a look at the
Twisted framework, a rich and mature framework for writing networked applications in Python.

■■ Note  If you have a strict firewall in place, it will probably warn you once you start running your own
network programs and stop them from connecting to the network. You should either configure your firewall to let
your Python do its work or, if the firewall has an interactive interface, simply allow the connections when asked.
Note, though, that any software connected to a network is a potential security risk, even if (or especially if) you
wrote the software yourself.

A Handful of Networking Modules
You can find plenty of networking modules in the standard library, and many more elsewhere. In addition to
those that clearly deal mainly with networking, several modules (such as those that deal with various forms
of data encoding for network transport) may be seen as network related. I’ve been fairly restrictive in my
selection of modules here.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 14 ■ Network Programming

274

The socket Module
A basic component in network programming is the socket. A socket is basically an “information channel”
with a program on both ends. The programs may be on different computers (connected through a network)
and may send information to each other through the socket. Most network programming in Python hides
the basic workings of the socket module and doesn’t interact with the sockets directly.

Sockets come in two varieties: server sockets and client sockets. After you create a server socket, you tell
it to wait for connections. It will then listen at a certain network address (a combination of an IP address and
a port number) until a client socket connects. The two can then communicate.

Dealing with client sockets is usually quite a bit easier than dealing with the server side, because the
server must be ready to deal with clients whenever they connect, and it must deal with multiple connections,
while the client simply connects, does its thing, and disconnects. Later in this chapter, I discuss server
programming through the SocketServer class family and the Twisted framework.

A socket is an instance of the socket class from the socket module. It is instantiated with up to three
parameters: an address family (defaulting to socket.AF_INET), whether it’s a stream (socket.SOCK_STREAM,
the default) or a datagram (socket.SOCK_DGRAM) socket, and a protocol (defaulting to 0, which should be
okay). For a plain-vanilla socket, you don’t really need to supply any arguments.

A server socket uses its bind method followed by a call to listen to listen to a given address. A client
socket can then connect to the server by using its connect method with the same address as used in bind.
(On the server side, you can, for example, get the name of the current machine using the function
socket.gethostname.) In this case, an address is just a tuple of the form (host, port), where host is a host
name (such as www.example.com) and port is a port number (an integer). The listen method takes a single
argument, which is the length of its backlog (the number of connections allowed to queue up, waiting for
acceptance, before connections start being disallowed).

Once a server socket is listening, it can start accepting clients. This is done using the accept method.
This method will block (wait) until a client connects, and then it will return a tuple of the form (client,
address), where client is a client socket and address is an address, as explained earlier. The server can deal
with the client as it sees fit and then start waiting for new connections, with another call to accept. This is
usually done in an infinite loop.

■■ Note T he form of server programming discussed here is called blocking or synchronous network
programming. In the section “Multiple Connections” later in this chapter, you’ll see examples of nonblocking or
asynchronous network programming, as well as using threads to be able to deal with several clients at once.

For transmitting data, sockets have two methods: send and recv (for “receive”). You can call send with a
string argument to send data and can call recv with a desired (maximum) number of bytes to receive data. If
you’re not sure which number to use, 1024 is as good a choice as any.

Listings 14-1 and 14-2 show an example client/server pair that is about as simple as it gets. If you run
them on the same machine (starting the server first), the server should print out a message about getting
a connection, and the client should then print out a message it has received from the server. You can run
several clients while the server is still running. By replacing the call to gethostname in the client with the
actual host name of the machine where the server is running, you can have the two programs connect across
a network from one machine to another.

http://www.example.com/

Chapter 14 ■ Network Programming

275

■■ Note T he port numbers you use are normally restricted. In a Linux or UNIX system, you need administrator
privileges to use a port below 1024. These low-numbered ports are used for standard services, such as port 80
for your web server (if you have one). Also, if you stop a server with Ctrl+C, for example, you might need to wait
for a bit before using the same port number again (you may get an “Address already in use” error).

Listing 14-1.  A Minimal Server

import socket
s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

s.listen(5)
while True:

 c, addr = s.accept()
 print('Got connection from', addr)
 c.send('Thank you for connecting')
 c.close()

Listing 14-2.  A Minimal Client

import socket

s = socket.socket()

host = socket.gethostname()
port = 1234

s.connect((host, port))
print(s.recv(1024))

You can find more information about the socket module in the Python Library Reference and in Gordon
McMillan’s Socket Programming HOWTO (http://docs.python.org/dev/howto/sockets.html).

The urllib and urllib2 Modules
Of the networking libraries available, the ones that probably give you the most bang for the buck are urllib
and urllib2. They enable you to access files across a network, just as if they were located on your computer.
Through a simple function call, virtually anything you can refer to with a Uniform Resource Locator (URL)
can be used as input to your program. Just imagine the possibilities you get if you combine this with the re
module: you can download web pages, extract information, and create automatic reports of your findings.

The two modules do more or less the same job, with urllib2 being a bit more “fancy.” For simple
downloads, urllib is quite all right. If you need HTTP authentication or cookies or you want to write
extensions to handle your own protocols, then urllib2 might be the right choice for you.

http://docs.python.org/dev/howto/sockets.html

Chapter 14 ■ Network Programming

276

Opening Remote Files
You can open remote files almost exactly as you do local files; the difference is that you can use only read
mode, and instead of open (or file), you use urlopen from the urllib.request module.

>>> from urllib.request import urlopen
>>> webpage = urlopen('http://www.python.org')

If you are online, the variable webpage should now contain a file-like object linked to the Python web
page at http://www.python.org.

■■ Note  If you want to experiment with urllib but aren’t currently online, you can access local files with
URLs that start with file:, such as file:c:\text\somefile.txt. (Remember to escape your backslashes.)

The file-like object that is returned from urlopen supports (among others) the close, read, readline,
and readlines methods, as well as iteration.

Let’s say you want to extract the (relative) URL of the “About” link on the Python page you just opened.
You could do that with regular expressions (for more information about regular expressions, see the section
about the re module in Chapter 10).

>>> import re
>>> text = webpage.read()
>>> m = re.search(b'about', text, re.IGNORECASE)
>>> m.group(1)
'/about/'

■■ Note  You may need to modify the regular expression if the web page has changed since the time of writing,
of course.

Retrieving Remote Files
The urlopen function gives you a file-like object you can read from. If you would rather have urllib take
care of downloading the file for you, storing a copy in a local file, you can use urlretrieve instead. Rather
than returning a file-like object, it returns a tuple (filename, headers), where filename is the name of the
local file (this name is created automatically by urllib), and headers contains some information about the
remote file. (I’ll ignore headers here; look up urlretrieve in the standard library documentation of urllib
if you want to know more about it.) If you want to specify a file name for the downloaded copy, you can
supply that as a second parameter.

urlretrieve('http://www.python.org', 'C:\\python_webpage.html')

This retrieves the Python home page and stores it in the file C:\python_webpage.html. If you don’t
specify a file name, the file is put in some temporary location, available for you to open (with the open
function), but when you’re finished with it, you may want to have it removed so that it doesn’t take up space
on your hard drive. To clean up such temporary files, you can call the function urlcleanup without any
arguments, and it takes care of things for you.

http://www.python.org/
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 14 ■ Network Programming

277

SOME UTILITIES

In addition to reading and downloading files through URLs, urllib also offers some functions for
manipulating the URLs themselves. (The following assumes some knowledge of URLs and CGI.) The
following functions are available:

•	 quote(string[, safe]): Returns a string in which all special characters (characters
that have special significance in URLs) have been replaced by URL-friendly versions
(such as %7E instead of ~). This can be useful if you have a string that might contain
such special characters and you want to use it as a URL. The safe string includes
characters that should not be coded like this. The default is '/'.

•	 quote_plus(string[, safe]): Works like quote but also replaces spaces with
plus signs.

•	 unquote(string): The reverse of quote.

•	 unquote_plus(string): The reverse of quote_plus.

•	 urlencode(query[, doseq]): Converts a mapping (such as a dictionary) or a
sequence of two-element tuples—of the form (key, value)—into a “URL-encoded”
string, which can be used in CGI queries. (Check the Python documentation for more
information.)

Other Modules
As mentioned, beyond the modules explicitly discussed in this chapter, there are hordes of network-related
modules in the Python library and elsewhere. Table 14-1 lists some network-related modules from the
Python standard library. As noted in the table, some of these modules are discussed elsewhere in the book.

Table 14-1.  Some Network-Related Modules in the Standard Library

Module Description

asynchat Additional functionality for asyncore (see Chapter 24)

asyncore Asynchronous socket handler (see Chapter 24)

cgi Basic CGI support (see Chapter 15)

Cookie Cookie object manipulation, mainly for servers

cookielib Client-side cookie support

email Support for e-mail messages (including MIME)

ftplib FTP client module

gopherlib Gopher client module

httplib HTTP client module

imaplib IMAP4 client module

(continued)

http://dx.doi.org/10.1007/978-1-4842-0028-5_24
http://dx.doi.org/10.1007/978-1-4842-0028-5_24
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 14 ■ Network Programming

278

SocketServer and Friends
As you saw in the section about the socket module earlier, writing a simple socket server isn’t really
hard. If you want to go beyond the basics, however, getting some help can be nice. The SocketServer
module is the basis for a framework of several servers in the standard library, including BaseHTTPServer,
SimpleHTTPServer, CGIHTTPServer, SimpleXMLRPCServer, and DocXMLRPCServer, all of which add various
specific functionality to the basic server.

SocketServer contains four basic classes: TCPServer, for TCP socket streams; UDPServer, for UDP
datagram sockets; and the more obscure UnixStreamServer and UnixDatagramServer. You probably won’t
need the last three.

To write a server using the SocketServer framework, you put most of your code in a request handler.
Each time the server gets a request (a connection from a client), a request handler is instantiated, and
various handler methods are called on it to deal with the request. Exactly which methods are called depends
on the specific server and handler class used, and you can subclass them to make the server call a custom set
of handlers. The basic BaseRequestHandler class places all of the action in a single method on the handler,
called handle, which is called by the server. This method then has access to the client socket in the attribute
self.request. If you’re working with a stream (which you probably are, if you use TCPServer), you can
use the class StreamRequestHandler, which sets up two other attributes, self.rfile (for reading) and
self.wfile (for writing). You can then use these file-like objects to communicate with the client.

The various other classes in the SocketServer framework implement basic support for HTTP servers,
including running CGI scripts, as well as support for XML-RPC (discussed in Chapter 27).

Listing 14-3 gives you a SocketServer version of the minimal server from Listing 14-1. It can be used
with the client in Listing 14-2. Note that the StreamRequestHandler takes care of closing the connection
when it has been handled. Also note that giving '' as the host name means that you’re referring to the
machine where the server is running.

Table 14-1.  (continued)

Module Description

mailbox Reads several mailbox formats

mailcap Access to MIME configuration through mailcap files

mhlib Access to MH mailboxes

nntplib NNTP client module (see Chapter 23)

poplib POP client module

robotparser Support for parsing web server robot files

SimpleXMLRPCServer A simple XML-RPC server (see Chapter 27)

smtpd SMTP server module

smtplib SMTP client module

telnetlib Telnet client module

urlparse Support for interpreting URLs

xmlrpclib Client support for XML-RPC (see Chapter 27)

http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_23
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 14 ■ Network Programming

279

Listing 14-3.  A SocketServer-Based Minimal Server

from socketserver import TCPServer, StreamRequestHandler

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print('Got connection from', addr)
 self.wfile.write('Thank you for connecting')

server = TCPServer(('', 1234), Handler)
server.serve_forever()

You can find more information about the SocketServer framework in the Python Library Reference and in
John Goerzen’s Foundations of Python Network Programming (Apress, 2004).

Multiple Connections
The server solutions discussed so far have been synchronous: only one client can connect and get its request
handled at a time. If one request takes a bit of time, such as, for example, a complete chat session, it’s
important that more than one connection can be dealt with simultaneously.

You can deal with multiple connections in three main ways: forking, threading, and asynchronous I/O.
Forking and threading can be dealt with very simply, by using mix-in classes with any of the SocketServer
servers (see Listings 14-4 and 14-5). Even if you want to implement them yourself, these methods are quite
easy to work with. They do have their drawbacks, however. Forking takes up resources and may not scale
well if you have many clients (although, for a reasonable number of clients, on modern UNIX or Linux
systems, forking is quite efficient, and can be even more so if you have a multi-CPU system). Threading
can lead to synchronization problems. I won’t go into these problems in any detail here (nor will I discuss
multithreading in depth), but I’ll show you how to use the techniques in the following sections.

FORKS? THREADS? WHAT’S ALL THIS, THEN?

Just in case you don’t know about forking or threads, here is a little clarification. Forking is a UNIX term.
When you fork a process (a running program), you basically duplicate it, and both resulting processes
keep running from the current point of execution, each with its own copy of the memory (variables and
such). One process (the original one) will be the parent process, while the other (the copy) will be the
child. If you’re a science fiction fan, you might think of parallel universes; the forking operation creates
a fork in the timeline, and you end up with two universes (the two processes) existing independently.
Luckily, the processes are able to determine whether they are the original or the child (by looking at the
return value of the fork function), so they can act differently. (If they couldn’t, what would be the point,
really? Both processes would do the same job, and you would just bog down your computer.)

In a forking server, a child is forked off for every client connection. The parent process keeps listening
for new connections, while the child deals with the client. When the client is satisfied, the child process
simply exits. Because the forked processes run in parallel, the clients don’t need to wait for each other.

Chapter 14 ■ Network Programming

280

Because forking can be a bit resource intensive (each forked process needs its own memory), an
alternative exists: threading. Threads are lightweight processes, or subprocesses, all of them existing
within the same (real) process, sharing the same memory. This reduction in resource consumption
comes with a downside, though. Because threads share memory, you must make sure they don’t
interfere with the variables for each other or try to modify the same things at the same time, creating a
mess. These issues fall under the heading of “synchronization.” With modern operating systems (except
Microsoft Windows, which doesn’t support forking), forking is actually quite fast, and modern hardware
can deal with the resource consumption much better than before. If you don’t want to bother with
synchronization issues, then forking may be a good alternative.

The best thing may, however, be to avoid this sort of parallelism altogether. In this chapter, you find
other solutions, based on the select function. Another way to avoid threads and forks is to switch
to Stackless Python (http://stackless.com), a version of Python designed to be able to switch
between different contexts quickly and painlessly. It supports a form of thread-like parallelism called
microthreads, which scale much better than real threads. For example, Stackless Python microthreads
have been used in EVE Online (http://www.eve-online.com) to serve thousands of users.

Asynchronous I/O is a bit more difficult to implement at a low level. The basic mechanism is the select
function of the select module (described in the section “Asynchronous I/O with select and poll”), which
is quite hard to deal with. Luckily, frameworks exist that work with asynchronous I/O on a higher level,
giving you a simple, abstract interface to a very powerful and scalable mechanism. A basic framework
of this kind, which is included in the standard library, consists of the asyncore and asynchat
modules, discussed in Chapter 24. Twisted (which is discussed last in this chapter) is a very powerful
asynchronous network programming framework.

Forking and Threading with SocketServer
Creating a forking or threading server with the SocketServer framework is so simple it hardly needs
any explanation. Listings 14-4 and 14-5 show you how to make the server from Listing 14-3 forking and
threading, respectively. The forking or threading behavior is useful only if the handle method takes a long
time to finish. Note that forking doesn’t work in Windows.

Listing 14-4.  A Forking Server

from socketserver import TCPServer, ForkingMixIn, StreamRequestHandler

class Server(ForkingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print('Got connection from', addr)
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

http://stackless.com/
http://www.eve-online.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_24

Chapter 14 ■ Network Programming

281

Listing 14-5.  A Threading Server

from socketserver import TCPServer, ThreadingMixIn, StreamRequestHandler

class Server(ThreadingMixIn, TCPServer): pass

class Handler(StreamRequestHandler):

 def handle(self):
 addr = self.request.getpeername()
 print('Got connection from', addr)
 self.wfile.write('Thank you for connecting')

server = Server(('', 1234), Handler)
server.serve_forever()

Asynchronous I/O with select and poll
When a server communicates with a client, the data it receives from the client may come in fits and spurts.
If you’re using forking and threading, that’s not a problem. While one parallel waits for data, other parallels
may continue dealing with their own clients. Another way to go, however, is to deal only with the clients that
actually have something to say at a given moment. You don’t even have to hear them out—you just hear (or,
rather, read) a little and then put it back in line with the others.

This is the approach taken by the frameworks asyncore/asynchat (see Chapter 24) and Twisted (see the
following section). The basis for this kind of functionality is the select function or, where available, the poll
function, both from the select module. Of the two, poll is more scalable, but it is available only in UNIX
systems (that is, not in Windows).

The select function takes three sequences as its mandatory arguments, with an optional timeout in
seconds as its fourth argument. The sequences are file descriptor integers (or objects with a fileno method
that return such an integer). These are the connections that we’re waiting for. The three sequences are for input,
output, and exceptional conditions (errors and the like). If no timeout is given, select blocks (that is, waits)
until one of the file descriptors is ready for action. If a timeout is given, select blocks for at most that many
seconds, with zero giving a straight poll (that is, no blocking). select returns three sequences (a triple—that is, a
tuple of length three), each representing an active subset of the corresponding parameter. For example, the first
sequence returned will be a sequence of input file descriptors where there is something to read.

The sequences can, for example, contain file objects (not in Windows) or sockets. Listing 14-6 shows
a server using select to serve several connections. (Note that the server socket itself is supplied to select
so that it can signal when there are new connections ready to be accepted.) The server is a simple logger
that prints out (locally) all data received from its clients. You can test it by connecting to it using telnet
(or by writing a simple socket-based client that feeds it some data). Try connecting with multiple telnet
connections to see that it can serve more than one client at once (although its log will then be a mixture of
the input from the two).

Listing 14-6.  A Simple Server Using select

import socket, select

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

http://dx.doi.org/10.1007/978-1-4842-0028-5_24

Chapter 14 ■ Network Programming

282

s.listen(5)
inputs = [s]
while True:
 rs, ws, es = select.select(inputs, [], [])
 for r in rs:
 if r is s:
 c, addr = s.accept()
 print('Got connection from', addr)
 inputs.append(c)

 else:
 try:
 data = r.recv(1024)
 disconnected = not data
 except socket.error:
 disconnected = True

 if disconnected:
 print(r.getpeername(), 'disconnected')
 inputs.remove(r)
 else:
 print(data)

The poll method is easier to use than select. When you call poll, you get a poll object. You can then
register file descriptors (or objects with a fileno method) with the poll object, using its register method.
You can later remove such objects again, using the unregister method. Once you’ve registered some objects
(for example, sockets), you can call the poll method (with an optional timeout argument) and get a list
(possibly empty) of pairs of the form (fd, event), where fd is the file descriptor and event tells you what
happened. It’s a bitmask, meaning that it’s an integer where the individual bits correspond to various events.
The various events are constants of the select module and are explained in Table 14-2. To check whether a
given bit is set (that is, if a given event occurred), you use the bitwise and operator (&), like this:

if event & select.POLLIN: ...

The program in Listing 14-7 is a rewrite of the server from Listing 14-6, now using poll instead of
select. Note that I’ve added a map (fdmap) from file descriptors (ints) to socket objects.

Table 14-2.  Polling Event Constants in the select Module

Event Name Description

POLLIN There is data to read available from the file descriptor.

POLLPRI There is urgent data to read from the file descriptor.

POLLOUT The file descriptor is ready for data and will not block if written to.

POLLERR Some error condition is associated with the file descriptor.

POLLHUP Hung up. The connection has been lost.

POLLNVAL Invalid request. The connection is not open.

Chapter 14 ■ Network Programming

283

Listing 14-7.  A Simple Server Using poll

import socket, select

s = socket.socket()

host = socket.gethostname()
port = 1234
s.bind((host, port))

fdmap = {s.fileno(): s}

s.listen(5)
p = select.poll()
p.register(s)
while True:

 events = p.poll()
 for fd, event in events:
 if fd in fdmap:
 c, addr = s.accept()
 print('Got connection from', addr)
 p.register(c)
 fdmap[c.fileno()] = c
 elif event & select.POLLIN:
 data = fdmap[fd].recv(1024)
 if not data: # No data -- connection closed
 print(fdmap[fd].getpeername(), 'disconnected')
 p.unregister(fd)
 del fdmap[fd]
 else:
 print(data)

You can find more information about select and poll in the Python Library Reference
(http://python.org/doc/lib/module-select.html). Also, reading the source code of the standard
library modules asyncore and asynchat (found in the asyncore.py and asynchat.py files in your Python
installation) can be enlightening.

Twisted
Twisted, from Twisted Matrix Laboratories (http://twistedmatrix.com), is an event-driven networking
framework for Python, originally developed for network games but now used by all kinds of network
software. In Twisted, you implement event handlers, much like you would in a GUI toolkit (see Chapter 12).
In fact, Twisted works quite nicely together with several common GUI toolkits (Tk, GTK, Qt, and wxWidgets).
In this section, I’ll cover some of the basic concepts and show you how to do some relatively simple
network programming using Twisted. Once you grasp the basic concepts, you can check out the Twisted
documentation (available on the Twisted web site, along with quite a bit of other information) to do some
more serious network programming. Twisted is a very rich framework and supports, among other things,
web servers and clients, SSH2, SMTP, POP3, IMAP4, AIM, ICQ, IRC, MSN, Jabber, NNTP, DNS, and more!

http://python.org/doc/lib/module-select.html
http://twistedmatrix.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_12

Chapter 14 ■ Network Programming

284

■■ Note A t the time of writing, the full functionality of Twisted is available only in Python 2, though an
ever-increasing part of the framework is being ported to Python 3. The code examples in the remainder of this
section use Python 2.7.

Downloading and Installing Twisted
Installing Twisted is quite easy. First, go to the Twisted Matrix web site (http://twistedmatrix.com) and,
from there, follow one of the download links. If you’re using Windows, download the Windows installer
for your version of Python. If you’re using some other system, download a source archive. (If you’re using
a package manager such as Portage, RPM, APT, Fink, or MacPorts, you can probably get it to download
and install Twisted directly.) The Windows installer is a self-explanatory step-by-step wizard. It may take
some time compiling and unpacking things, but all you have to do is wait. To install the source archive,
you first unpack it (using tar and then either gunzip or bunzip2, depending on which type of archive you
downloaded) and then run the Distutils script.

python setup.py install

You should then be able to use Twisted.

Writing a Twisted Server
The basic socket servers written earlier in this chapter are very explicit. Some of them have an explicit event
loop, looking for new connections and new data. SocketServer-based servers have an implicit loop where
the server looks for connections and creates a handler for each connection, but the handlers still must be
explicit about trying to read data. Twisted (like the asyncore/asynchat framework, discussed in Chapter 24)
uses an even more event-based approach. To write a basic server, you implement event handlers that deal
with situations such as a new client connecting, new data arriving, and a client disconnecting (as well as
many other events). Specialized classes can build more refined events from the basic ones, such as wrapping
“data arrived” events, collecting the data until a newline is found, and then dispatching a “line of data
arrived” event.

■■ Note O ne thing I have not dealt with in this section but is somewhat characteristic of Twisted is the concept
of deferreds and deferred execution. See the Twisted documentation for more information (see, for example, the
tutorial called “Deferreds are beautiful,” available from the HOWTO page of the Twisted documentation).

Your event handlers are defined in a protocol. You also need a factory that can construct such protocol
objects when a new connection arrives. If you just want to create instances of a custom protocol class, you
can use the factory that comes with Twisted, the Factory class in the module twisted.internet.protocol.
When you write your protocol, use the Protocol from the same module as your superclass. When you get
a connection, the event handler connectionMade is called. When you lose a connection, connectionLost
is called. Data is received from the client through the handler dataReceived. Of course, you can’t use the
event-handling strategy to send data back to the client—for that you use the object self.transport, which
has a write method. It also has a client attribute, which contains the client address (host name and port).

http://twistedmatrix.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_24

Chapter 14 ■ Network Programming

285

Listing 14-8 contains a Twisted version of the server from Listings 14-6 and 14-7. I hope you agree that
the Twisted version is quite a bit simpler and more readable. There is a little bit of setup involved; you need
to instantiate Factory and set its protocol attribute so it knows which protocol to use when communicating
with clients (that is, your custom protocol).

Then you start listening at a given port with that factory standing by to handle connections by
instantiating protocol objects. You do this using the listenTCP function from the reactor module. Finally,
you start the server by calling the run function from the same module.

Listing 14-8.  A Simple Server Using Twisted

from twisted.internet import reactor
from twisted.internet.protocol import Protocol, Factory

class SimpleLogger(Protocol):

 def connectionMade(self):
 print('Got connection from', self.transport.client)

 def connectionLost(self, reason):
 print(self.transport.client, 'disconnected')

 def dataReceived(self, data):
 print(data)

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

If you connected to this server using telnet to test it, you may have gotten a single character on each line
of output, depending on buffering and the like. You could simply use sys.sout.write instead of print, but
in many cases, you might like to get a single line at a time, rather than just arbitrary data. Writing a custom
protocol that handles this for you would be quite easy, but there is, in fact, such a class available already.
The module twisted.protocols.basic contains a couple of useful predefined protocols, among them
LineReceiver. It implements dataReceived and calls the event handler lineReceived whenever a full line is
received.

■■ Tip  If you need to do something when you receive data in addition to using lineReceived, which depends
on the LineReceiver implementation of dataReceived, you can use the new event handler defined by
LineReceiver called rawDataReceived.

Switching the protocol requires only a minimum of work. Listing 14-9 shows the result. If you look at the
resulting output when running this server, you’ll see that the newlines are stripped; in other words, using
print won’t give you double newlines anymore.

Chapter 14 ■ Network Programming

286

Listing 14-9.  An Improved Logging Server, Using the LineReceiver Protocol

from twisted.internet import reactor
from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class SimpleLogger(LineReceiver):

 def connectionMade(self):
 print('Got connection from', self.transport.client)

 def connectionLost(self, reason):
 print(self.transport.client, 'disconnected')

 def lineReceived(self, line):
 print(line)

factory = Factory()
factory.protocol = SimpleLogger

reactor.listenTCP(1234, factory)
reactor.run()

As noted earlier, there is a lot more to the Twisted framework than what I’ve shown you here. If you’re
interested in learning more, you should check out the online documentation, available at the Twisted web
site (http://twistedmatrix.com).

A Quick Summary
This chapter has given you a taste of several approaches to network programming in Python. Which
approach you choose will depend on your specific needs and preferences. Once you’ve chosen, you will,
most likely, need to learn more about the specific method. Here are some of the topics this chapter touched
upon:

Sockets and the socket module: Sockets are information channels that let
programs (processes) communicate, possibly across a network. The socket
module gives you low-level access to both client and server sockets. Server
sockets listen at a given address for client connections, while clients simply
connect directly.

urllib and urllib2: These modules let you read and download data from
various servers, given a URL to the data source. The urllib module is a simpler
implementation, while urllib2 is very extensible and quite powerful. Both work
through straightforward functions such as urlopen.

The SocketServer framework: This is a network of synchronous server base
classes, found in the standard library, which lets you write servers quite easily.
There is even support for simple web (HTTP) servers with CGI. If you want
to handle several connections simultaneously, you need to use a forking or
threading mix-in class.

http://twistedmatrix.com/

Chapter 14 ■ Network Programming

287

select and poll: These two functions let you consider a set of connections and
find out which ones are ready for reading and writing. This means that you
can serve several connections piecemeal, in a round-robin fashion. This gives
the illusion of handling several connections at the same time and, although
superficially a bit more complicated to code, is a much more scalable and
efficient solution than threading or forking.

Twisted: This framework, from Twisted Matrix Laboratories, is very rich and
complex, with support for most major network protocols. Even though it is large
and some of the idioms used may seem a bit foreign, basic usage is very simple
and intuitive. The Twisted framework is also asynchronous, so it’s very efficient
and scalable. If you have Twisted available, it may very well be the best choice for
many custom network applications.

New Functions in This Chapter

Function Description

urllib.urlopen(url[, data[, proxies]]) Opens a file-like object from a URL

urllib.urlretrieve(url[, fname[, hook[, data]]]) Downloads a file from a URL

urllib.quote(string[, safe]) Quotes special URL characters

urllib.quote_plus(string[, safe]) The same as quote, but quotes spaces as +

urllib.unquote(string) The reverse of quote

urllib.unquote_plus(string) The reverse of quote_plus

urllib.urlencode(query[, doseq]) Encodes mapping for use in CGI queries

select.select(iseq, oseq, eseq[, timeout]) Finds sockets ready for reading/writing

select.poll() Creates a poll object, for polling sockets

reactor.listenTCP(port, factory) Twisted function; listens for connections

reactor.run() Twisted function; main server loop

What Now?
You thought we were finished with network stuff now, huh? Not a chance. The next chapter deals with a
quite specialized and much publicized entity in the world of networking: the Web.

289© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_15

CHAPTER 15

Python and the Web

This chapter tackles some aspects of web programming with Python. This is a really vast area, but I’ve
selected three main topics for your amusement: screen scraping, CGI, and mod_python.

In addition, I give you some pointers for finding the proper toolkits for more advanced web application
and web service development. For extended examples using CGI, see Chapters 25 and 26. For an example of
using the specific web service protocol XML-RPC, see Chapter 27.

Screen Scraping
Screen scraping is a process whereby your program downloads web pages and extracts information from
them. This is a useful technique that is applicable whenever there is a page online that has information you
want to use in your program. It is especially useful, of course, if the web page in question is dynamic, that is, if
it changes over time. Otherwise, you could just download it once and extract the information manually. (The
ideal situation is, of course, one where the information is available through web services, as discussed later in
this chapter.)

Conceptually, the technique is very simple. You download the data and analyze it. You could, for example,
simply use urllib, get the web page’s HTML source, and then use regular expressions (see Chapter 10) or
another technique to extract the information. Let’s say, for example, that you wanted to extract the various
employer names and web sites from the Python Job Board, at http://python.org/jobs. You browse the
source and see that the names and URLs can be found as links like this one:

Python Engineer

Listing 15-1 shows a sample program that uses urllib and re to extract the required information.

Listing 15-1.  A Simple Screen-Scraping Program

from urllib.request import urlopen
import re
p = re.compile('(.*?)')
text = urlopen('http://python.org/jobs').read().decode()
for url, name in p.findall(text):
 print('{} ({})'.format(name, url))

http://dx.doi.org/10.1007/978-1-4842-0028-5_25
http://dx.doi.org/10.1007/978-1-4842-0028-5_26
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://python.org/jobs

Chapter 15 ■ Python and the Web

290

The code could certainly be improved, but it does its job pretty well. There are, however, at least three
weaknesses with this approach.

•	 The regular expression isn’t exactly readable. For more complex HTML code
and more complex queries, the expressions can become even hairier and more
unmaintainable.

•	 It doesn’t deal with HTML peculiarities like CDATA sections and character entities
(such as &). If you encounter such beasts, the program will, most likely, fail.

•	 The regular expression is tied to details in the HTML source code, rather than some
more abstract structure. This means that small changes in how the web page is
structured can break the program. (By the time you’re reading this, it may already be
broken.)

The following sections deal with two possible solutions for the problems posed by the regular expression-
based approach. The first is to use a program called Tidy (as a Python library) together with XHTML parsing.
The second is to use a library called Beautiful Soup, specifically designed for screen scraping.

■■ Note  There are other tools for screen scraping with Python. You might, for example, want to check out
Ka-Ping Yee’s scrape.py (found at http://zesty.ca/python).

Tidy and XHTML Parsing
The Python standard library has plenty of support for parsing structured formats such as HTML and XML
(see the Python Library Reference’s “Structured Markup Processing Tools” section). I discuss XML and XML
parsing in more depth in Chapter 22. In this section, I just give you the tools needed to deal with XHTML,
one of the two concrete syntaxes described by the HTML 5 specification, which happens to be a form of
XML. Much of what is described should work equally well with plain HTML.

If every web page consisted of correct and valid XHTML, the job of parsing it would be quite simple. The
problem is that older HTML dialects are a bit sloppier, and some people don’t even care about the strictures
of those sloppier dialects. The reason for this is, probably, that most web browsers are quite forgiving and
will try to render even the most jumbled and meaningless HTML as best they can. If this happens to look
acceptable to the page authors, they may be satisfied. This does make the job of screen scraping quite a bit
harder, though.

The general approach for parsing HTML in the standard library is event-based; you write event handlers
that are called as the parser moves along the data. The standard library module html.parser will let you
parse really sloppy HTML in this manner, but if you want to extract data based on document structure (such
as the first item after the second level-two heading), you’ll need to do some heavy guessing if there are
missing tags, for example. You are certainly welcome to do this, if you like, but there is another way: Tidy.

What’s Tidy?
Tidy is a tool for fixing ill-formed and sloppy HTML. It can fix a range of common errors in a rather
intelligent manner, doing a lot of work that you would probably rather not do yourself. It’s also quite
configurable, letting you turn various corrections on or off.

http://zesty.ca/python
http://dx.doi.org/10.1007/978-1-4842-0028-5_22

Chapter 15 ■ Python and the Web

291

Here is an example of an HTML file filled with errors, some of them just old-school HTML, and some of
them plain wrong (can you spot all the problems?):

<h1>Pet Shop
<h2>Complaints</h3>

<p>There is no <i>way at all</i> we can accept returned
parrots.

<h1><i>Dead Pets</h1>

<p>Our pets may tend to rest at times, but rarely die within the
warranty period.

<i><h2>News</h2></i>

<p>We have just received a really nice parrot.

<p>It's really nice.

<h3><hr>The Norwegian Blue</h3>

<h4>Plumage and <hr>pining behavior</h4>
More information<a>

<p>Features:
<body>
Beautiful plumage

Here is the version that is fixed by Tidy:

<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
<h1>Pet Shop</h1>
<h2>Complaints</h2>
<p>There is no <i>way</i> <i>at all</i> we can accept
returned parrots.</p>
<h1><i>Dead Pets</i></h1>
<p><i>Our pets may tend to rest at times, but rarely die within the
warranty period.</i></p>
<h2><i>News</i></h2>
<p>We have just received a really nice parrot.</p>
<p>It's really nice.</p>
<hr>
<h3>The Norwegian Blue</h3>
<h4>Plumage and</h4>
<hr>

Chapter 15 ■ Python and the Web

292

<h4>pining behavior</h4>
More information
<p>Features:</p>

Beautiful plumage

</body>
</html>

Of course, Tidy can’t fix all problems with an HTML file, but it does make sure it’s well formed (that is, all
elements nest properly), which makes it much easier for you to parse it.

Getting Tidy
There are several Python wrappers for the Tidy library, and which one is the most up-to-date seems to vary a
bit. If you’re using pip, you can have a look at your options by using this:

$ pip search tidy

A good candidate is PyTidyLib, which you could install as follows:

$ pip install pytidylib

You don’t have to install a wrapper for the library, though. If you’re running a UNIX or Linux machine
of some sort, it’s quite possible that you have the command-line version of Tidy available. And no matter
what operating system you’re using, you can probably get an executable binary from the Tidy web site
(http://html-tidy.org). Once you have the binary version, you can use the subprocess module (or some
of the popen functions) to run the Tidy program. Assuming, for example, that you have a messy HTML file
called messy.html and that you have the command-line version of Tidy in your execution path, the following
program will run Tidy on it and print the result:

from subprocess import Popen, PIPE

text = open('messy.html').read()
tidy = Popen('tidy', stdin=PIPE, stdout=PIPE, stderr=PIPE)

tidy.stdin.write(text.encode())
tidy.stdin.close()

print(tidy.stdout.read().decode())

If Popen can’t find tidy, you might want to provide it with a full path to the executable.

In practice, instead of printing the result, you would, most likely, extract some useful information from it, as
demonstrated in the following sections.

http://html-tidy.org/

Chapter 15 ■ Python and the Web

293

But Why XHTML?
The main difference between XHTML and older forms of HTML (at least for our current purposes) is that
XHTML is quite strict about closing all elements explicitly. So in HTML you might end one paragraph simply
by beginning another (with a <p> tag), but in XHTML, you first need to close the paragraph explicitly (with
a </p> tag). This makes XHTML much easier to parse, because you can tell directly when you enter or leave
the various elements. Another advantage of XHTML (which I won’t really capitalize on in this chapter) is
that it is an XML dialect, so you can use all kinds of nifty XML tools on it, such as XPath. (For more about
XML, see Chapter 22; for more about the uses of XPath, see, for example, http://www.w3schools.com/xml/
xml:xpath.asp.)

A very simple way of parsing the kind of well-behaved XHTML you get from Tidy is using the
HTMLParser class from the standard library module html.parser.

Using HTMLParser
Using HTMLParser simply means subclassing it and overriding various event-handling methods such as
handle_starttag and handle_data. Table 15-1 summarizes the relevant methods and when they’re called
(automatically) by the parser.

Table 15-1.  The HTMLParser Callback Methods

Callback Method When Is It Called?

handle_starttag(tag, attrs) When a start tag is found, attrs is a sequence of (name, value) pairs.

handle_startendtag(tag, attrs) For empty tags; default handles start and end separately.

handle_endtag(tag) When an end tag is found.

handle_data(data) For textual data.

handle_charref(ref) For character references of the form &#ref;.

handle_entityref(name) For entity references of the form &name;.

handle_comment(data) For comments; called with only the comment contents.

handle_decl(decl) For declarations of the form <!...>.

handle_pi(data) For processing instructions.

unknown_decl(data) Called when an unknown declaration is read.

For screen-scraping purposes, you usually won’t need to implement all the parser callbacks (the event
handlers), and you probably won’t need to construct some abstract representation of the entire document
(such as a document tree) to find what you want. If you just keep track of the minimum of information
needed to find what you’re looking for, you’re in business. (See Chapter 22 for more about this topic, in the
context of XML parsing with SAX.) Listing 15-2 shows a program that solves the same problem as
Listing 15-1, but this time using HTMLParser.

http://dx.doi.org/10.1007/978-1-4842-0028-5_22
http://www.w3schools.com/xml/xml:xpath.asp
http://www.w3schools.com/xml/xml:xpath.asp
http://dx.doi.org/10.1007/978-1-4842-0028-5_22

Chapter 15 ■ Python and the Web

294

Listing 15-2.  A Screen-Scraping Program Using the HTMLParser Module

from urllib.request import urlopen
from html.parser import HTMLParser

def isjob(url):
 try:
 a, b, c, d = url.split('/')
 except ValueError:
 return False
 return a == d == '' and b == 'jobs' and c.isdigit()

class Scraper(HTMLParser):

 in_link = False

 def handle_starttag(self, tag, attrs):
 attrs = dict(attrs)
 url = attrs.get('href', '')
 if tag == 'a' and isjob(url):
 self.url = url
 self.in_link = True
 self.chunks = []

 def handle_data(self, data):
 if self.in_link:
 self.chunks.append(data)

 def handle_endtag(self, tag):
 if tag == 'a' and self.in_link:
 print('{} ({})'.format(''.join(self.chunks), self.url))
 self.in_link = False

text = urlopen('http://python.org/jobs').read().decode()
parser = Scraper()
parser.feed(text)
parser.close()

A few things are worth noting. First of all, I’ve dropped the use of Tidy here, because the HTML in the web
page is well behaved enough. If you’re lucky, you may find that you don’t need to use Tidy either. Also note
that I’ve used a Boolean state variable (attribute) to keep track of whether I’m inside a relevant link. I check
and update this attribute in the event handlers. Second, the attrs argument to handle_starttag is a list of
(key, value) tuples, so I’ve used dict to turn them into a dictionary, which I find to be more manageable.

The handle_data method (and the chunks attribute) may need some explanation. It uses a technique
that is quite common in event-based parsing of structured markup such as HTML and XML. Instead of
assuming that I’ll get all the text I need in a single call to handle_data, I assume that I may get several chunks
of it, spread over more than one call. This may happen for several reasons—buffering, character entities,
markup that I’ve ignored, and so on—and I just need to make sure I get all the text. Then, when I’m ready to
present my result (in the handle_endtag method), I simply join all the chunks together. To actually run the
parser, I call its feed method with the text and then call its close method.

Chapter 15 ■ Python and the Web

295

Solutions like these may in some cases be more robust to changes in the input data than using regular
expressions. Still, you may object that it is too verbose and perhaps no clearer or easier to understand than
the regular expression. For a more complex extraction task, the arguments in favor of this sort of parsing
might seem more convincing, but one is still left with the feeling that there must be a better way. And, if you
don’t mind installing another module, there is . . .

Beautiful Soup
Beautiful Soup is a spiffy little module for parsing and dissecting the kind of HTML you sometimes find
on the Web—the sloppy and ill-formed kind. To quote the Beautiful Soup web site (http://crummy.com/
software/BeautifulSoup):

You didn't write that awful page. You're just trying to get some data out of it. Beautiful
Soup is here to help.

Downloading and installing Beautiful Soup is a breeze. As with most packages, you can use pip.

$ pip install beautifulsoup4

You might want to do a pip search to see if there’s a more recent version. With Beautiful Soup installed, the
running example of extracting Python jobs from the Python Job Board becomes really, really simple and
quite readable, as shown in Listing 15-3. Instead of checking the contents of the URL, I now navigate the
structure of the document.

Listing 15-3.  A Screen-Scraping Program Using Beautiful Soup

from urllib.request import urlopen
from bs4 import BeautifulSoup

text = urlopen('http://python.org/jobs').read()
soup = BeautifulSoup(text, 'html.parser')

jobs = set()
for job in soup.body.section('h2'):
 jobs.add('{} ({})'.format(job.a.string, job.a['href']))

print('\n'.join(sorted(jobs, key=str.lower)))

I simply instantiate the BeautifulSoup class with the HTML text I want to scrape and then use various
mechanisms to extract parts of the resulting parse tree. For example, I use soup.body to get the body of the
document and then access its first section. I call the resulting object with 'h2' as an argument, and this
is equivalent to using its find_all method, which gives me a collection of all the h2 elements inside the
section. Each of those represents one job, and I’m interested in the first link it contains, job.a. The string
attribute is its textual content, while a['href'] is the href attribute. As I’m sure you noticed, I added the use
of set and sorted (with a key function set to ignore case differences) in Listing 15-3. This has nothing to do
with Beautiful Soup; it was just to make the program more useful, by eliminating duplicates and printing the
names in sorted order.

If you want to use your scrapings for an RSS feed (discussed later in this chapter), you can use another
tool related to Beautiful Soup, called Scrape ’N’ Feed (at http://crummy.com/software/ScrapeNFeed).

http://crummy.com/software/BeautifulSoup
http://crummy.com/software/BeautifulSoup
http://crummy.com/

Chapter 15 ■ Python and the Web

296

Dynamic Web Pages with CGI
While the first part of this chapter dealt with client-side technology, now we switch gears and tackle the
server side. This section deals with a basic web programming technology: the Common Gateway Interface
(CGI). CGI is a standard mechanism by which a web server can pass your queries (typically supplied through
a web form) to a dedicated program (for example, your Python program) and display the result as a web
page. It is a simple way of creating web applications without writing your own special-purpose application
server. For more information about CGI programming in Python, see the Web Programming topic guide on
the Python web site (http://wiki.python.org/moin/WebProgramming).

The key tool in Python CGI programming is the cgi module. Another module that can be very useful
during the development of CGI scripts is cgitb—more about that later, in the section “Debugging with cgitb.”

Before you can make your CGI scripts accessible (and runnable) through the Web, you need to put them
where a web server can access them, add a pound bang line, and set the proper file permissions. These three
steps are explained in the following sections.

Step 1: Preparing the Web Server
I’m assuming that you have access to a web server—in other words, that you can put stuff on the Web.
Usually, that is a matter of putting your web pages, images, and so on, in a particular directory (in UNIX,
typically called public_html). If you don’t know how to do this, you should ask your Internet service
provider (ISP) or system administrator.

■■ Tip  If you are running macOS, you have the Apache web server as part of your operating system
installation. It can be switched on through the Sharing preference pane of System Preferences, by checking the
Web Sharing option.

If you’re just experimenting a bit, you could run a temporary web server directly from Python, using the
http.server module. As any module, it can be imported and run by supplying your Python executable with
the -m switch. If you add --cgi to the module, the resulting server will support CGI. Note that the server will
serve up files in the directory where you run it, so make sure you don’t have anything secret in there.

$ python -m http.server --cgi
Serving HTTP on 0.0.0.0 port 8000 ...

If you now point your browser to http://127.0.0.1:8000 or http://localhost:8000, you should see
a listing of the directory where you run the server. You should also see the server telling you about the
connection.

Your CGI programs must also be put in a directory where they can be accessed via the Web. In addition,
they must somehow be identified as CGI scripts, so the web server doesn’t just serve the plain source code as
a web page. There are two typical ways of doing this:

•	 Put the script in a subdirectory called cgi-bin.

•	 Give your script the file name extension .cgi.

Exactly how this works varies from server to server—again, check with your ISP or system administrator if
you’re in doubt. (For example, if you’re using Apache, you may need to turn on the ExecCGI option for the
directory in question.) If you’re using the server from the http.server module, you should use a cgi-bin
subdirectory.

http://wiki.python.org/moin/WebProgramming

Chapter 15 ■ Python and the Web

297

Step 2: Adding the Pound Bang Line
When you’ve put the script in the right place (and possibly given it a specific file name extension), you must
add a pound bang line to the beginning of the script. I mentioned this in Chapter 1 as a way of executing
your scripts without needing to explicitly execute the Python interpreter. Usually, this is just convenient,
but for CGI scripts, it’s crucial—without it, the web server won’t know how to execute your script. (For all it
knows, the script could be written in some other programming language such as Perl or Ruby.) In general,
simply adding the following line to the beginning of your script will do:

#!/usr/bin/env python

Note that it must be the very first line. (No empty lines before it.) If that doesn’t work, you need to find out
exactly where the Python executable is and use the full path in the pound bang line, as in the following:

#!/usr/bin/python

If you have both Python 2 and 3 installed, you may need to use python3 instead. (That is also possible
together with the env solution, shown earlier.) If it still doesn’t work, it may be that there is something
wrong that you cannot see, namely, that the line ends in \r\n instead of simply \n, and your web server gets
confused. Make sure you’re saving the file as a plain UNIX-style text file.

In Windows, you use the full path to your Python binary, as in this example:

#!C:\Python36\python.exe

Step 3: Setting the File Permissions
The final thing you need to do (at least if your web server is running on a UNIX or Linux machine) is to set
the proper file permissions. You must make sure that everyone is allowed to read and execute your script file
(otherwise the web server wouldn’t be able to run it) but also make sure that only you are allowed to write to
it (so no one can change your script).

■■ Tip  Sometimes, if you edit a script in Windows and it’s stored on a UNIX disk server (you may be accessing
it through Samba or FTP, for example), the file permissions may be fouled up after you’ve made a change to
your script. So if your script won’t run, make sure that the permissions are still correct.

The UNIX command for changing file permissions (or file mode) is chmod. Simply run the following
command (if your script is called somescript.cgi), using your normal user account, or perhaps one set up
specifically for such web tasks.

chmod 755 somescript.cgi

After having performed all these preparations, you should be able to open the script as if it were a web page
and have it executed.

■■ Note  You shouldn’t open the script in your browser as a local file. You must open it with a full HTTP URL so
that you actually fetch it via the Web (through your web server).

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

Chapter 15 ■ Python and the Web

298

Your CGI script won’t normally be allowed to modify any files on your computer. If you want to allow it to
change a file, you must explicitly give it permission to do so. You have two options. If you have root (system
administrator) privileges, you may create a specific user account for your script and change ownership of the
files that need to be modified. If you don’t have root access, you can set the file permissions for the file so all
users on the system (including that used by the web server to run your CGI scripts) are allowed to write to
the file. You can set the file permissions with this command:

chmod 666 editable_file.txt

■■ Caution  Using file mode 666 is a potential security risk. Unless you know what you’re doing, it’s best to avoid it.

CGI Security Risks
Some security issues are associated with using CGI programs. If you allow your CGI script to write to files
on your server, that ability may be used to destroy data unless you write your program carefully. Similarly, if
you evaluate data supplied by a user as if it were Python code (for example, with exec or eval) or as a shell
command (for example, with os.system or using the subprocess module), you risk performing arbitrary
commands, which is a huge (as in humongous) risk. Even using a user-supplied string as part of
a SQL query is risky, unless you take great care to sanitize the string first; so-called SQL injection is a
common way of attacking or breaking into a system.

A Simple CGI Script
The simplest possible CGI script looks something like Listing 15-4.

Listing 15-4.  A Simple CGI Script

#!/usr/bin/env python

print('Content-type: text/plain')
print() # Prints an empty line, to end the headers

print('Hello, world!')

If you save this in a file called simple1.cgi and open it through your web server, you should see a web page
containing only the words “Hello, world!” in plain text. To be able to open this file through a
web server, you must put it where the web server can access it. In a typical UNIX environment, putting
it in a directory called public_html in your home directory would enable you to open it with the URL
http://localhost/~username/simple1.cgi (substitute your user name for username). Ask your ISP or
system administrator for details. If you’re using a cgi-bin directory, you may as well call it something like
simple1.py.

As you can see, everything the program writes to standard output (for example, with print) ends up in
the resulting web page—at least almost everything. The fact is that the first things you print are HTTP headers,
which are lines of information about the page. The only header I concern myself with here is Content-type.
As you can see, the phrase Content-type is followed by a colon, a space, and the type name text/plain. This
indicates that the page is plain text. To indicate HTML, this line should instead be as follows:

print('Content-type: text/html')

Chapter 15 ■ Python and the Web

299

After all the headers have been printed, a single empty line is printed to signal that the document itself is
about to begin. And, as you can see, in this case the document is simply the string 'Hello, world!'.

Debugging with cgitb
Sometimes a programming error makes your program terminate with a stack trace because of an uncaught
exception. When running the program through CGI, this will most likely result in an unhelpful error message
from the web server, or perhaps even just a black page. If you have access to the server log (for example,
if you’re using http.server), you can probably get some information there. To help you debug your CGI
scripts in general, though, the standard module contains a useful module called cgitb (for CGI traceback).
By importing it and calling its enable function, you can get a quite helpful web page with information about
what went wrong. Listing 15-5 gives an example of how you might use the cgitb module.

Listing 15-5.  A CGI Script That Invokes a Traceback (faulty.cgi)

#!/usr/bin/env python

import cgitb; cgitb.enable()

print('Content-type: text/html\n')

print(1/0)

print('Hello, world!')

The result of accessing this script in a browser (through a web server) is shown in Figure 15-1.

Figure 15-1.  A CGI traceback from the cgitb module

Chapter 15 ■ Python and the Web

300

Note that you’ll probably want to turn off the cgitb functionality after developing the program, since the
traceback page isn’t meant for the casual user of your program.1

Using the cgi Module
So far, the programs have only produced output; they haven’t used any form of input. Input is supplied to the
CGI script from an HTML form (described in the next section) as key-value pairs, or fields. You can retrieve
these fields in your CGI script using the FieldStorage class from the cgi module. When you create your
FieldStorage instance (you should create only one), it fetches the input variables (or fields) from the request
and presents them to your program through a dictionary-like interface. The values of the FieldStorage can
be accessed through ordinary key lookup, but because of some technicalities (related to file uploads, which
we won’t be dealing with here), the elements of the FieldStorage aren’t really the values you’re after. For
example, if you knew the request contained a value named name, you couldn’t simply do this:

form = cgi.FieldStorage()
name = form['name']

You would need to do this:

form = cgi.FieldStorage()
name = form['name'].value

A slightly simpler way of fetching the values is the getvalue method, which is similar to the dictionary
method get, except that it returns the value of the value attribute of the item. Here is an example:

form = cgi.FieldStorage()
name = form.getvalue('name', 'Unknown')

In the preceding example, I supplied a default value ('Unknown'). If you don’t supply one, None will be the
default. The default is used if the field is not filled in.

Listing 15-6 contains a simple example that uses cgi.FieldStorage.

Listing 15-6.  A CGI Script That Retrieves a Single Value from a FieldStorage (simple2.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print('Content-type: text/plain\n')

print('Hello, {}!'.format(name))

1An alternative is to turn off the display and log the errors to files instead. See the Python Library Reference for more
information.

Chapter 15 ■ Python and the Web

301

INVOKING CGI SCRIPTS WITHOUT FORMS

Input to CGI scripts generally comes from web forms that have been submitted, but it is also possible
to call the CGI program with parameters directly. You do this by adding a question mark after the URL to
your script and then adding key-value pairs separated by ampersands (&). For example, if the URL to the
script in Listing 15-6 were http://www.example.com/simple2.cgi, you could call it with name=Gumby
and age=42 with the URL http://www.example.com/simple2.cgi?name=Gumby&age=42. If you try
that, you should get the message “Hello, Gumby!” instead of “Hello, world!” from your CGI script. (Note
that the age parameter isn’t used.) You can use the urlencode method of the urllib.parse module to
create this kind of URL query:

>>> urlencode({'name': 'Gumby', 'age': '42'})
'age=42&name=Gumby'

You can use this strategy in your own programs, together with urllib, to create a screen-scraping
program that can actually interact with a CGI script. However, if you’re writing both ends (that is, both
server and client sides) of such a contraption, you would, most likely, be better off using some form of
web service (as described in the section “Web Services: Scraping Done Right” in this chapter).

A Simple Form
Now you have the tools for handling a user request; it’s time to create a form that the user can submit. That
form can be a separate page, but I’ll just put it all in the same script.

To find out more about writing HTML forms (or HTML in general), you should perhaps get a good
book on HTML (your local bookstore probably has several). You can also find plenty of information on the
subject online. And, as always, if you find some page that you think looks like a good example for what you
would like to do, you can inspect its source in your browser by choosing View Source or something similar
(depending on which browser you have) from one of the menus.

■■ Note  There are two main ways of getting information from a CGI script: the GET method and the POST
method. For the purposes of this chapter, the difference between the two isn’t really important. Basically, GET is
for retrieving things and encodes its query in the URL; POST can be used for any kind of query but encodes the
query a bit differently.

Let’s return to our script. An extended version can be found in Listing 15-7.

Listing 15-7.  A Greeting Script with an HTML Form (simple3.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

name = form.getvalue('name', 'world')

print("""Content-type: text/html

http://www.example.com/simple2.cgi
http://www.example.com/simple2.cgi?name=Gumby&age=42

Chapter 15 ■ Python and the Web

302

<html>
 <head>
 <title>Greeting Page</title>
 </head>
 <body>
 <h1>Hello, {}!</h1>

 <form action='simple3.cgi'>
 Change name <input type='text' name='name' />
 <input type='submit' />
 </form>
 </body>
</html>
""".format(name))

In the beginning of this script, the CGI parameter name is retrieved, as before, with the default 'world'. If you
just open the script in your browser without submitting anything, the default is used.

Then a simple HTML page is printed, containing name as a part of the headline. In addition, this page
contains an HTML form whose action attribute is set to the name of the script itself (simple3.cgi). That
means that if the form is submitted, you are taken back to the same script. The only input element in the
form is a text field called name. Thus, if you submit the field with a new name, the headline should change
because the name parameter now has a value.

Figure 15-2 shows the result of accessing the script in Listing 15-7 through a web server.

Figure 15-2.  The result of executing the CGI script in Listing 15-7

Chapter 15 ■ Python and the Web

303

Using a Web Framework
Most people don’t write CGI scripts directly for any serious web applications; rather, they use a web
framework, which does a lot of heavy lifting for you. There are plenty of such frameworks available, and I’ll
mention a few of them later—but for now, let’s stick to a really simple but highly useful one called Flask
(http://flask.pocoo.org). It’s easily installed using pip.

$ pip install flask

Suppose you’ve written an exciting function that calculates powers of two.

def powers(n=10):
 return ', '.join(str(2**i) for i in range(n))

Now you want to make this masterpiece available to the world! To do that with Flask, you first instantiate the
Flask class with the appropriate name and tell it which URL path corresponds to your function.

from flask import Flask
app = Flask(__name__)

@app.route('/')
def powers(n=10):
 return ', '.join(str(2**i) for i in range(n))

If your script is called powers.py, you can have Flask run it as follows (assuming a UNIX-style shell):

$ export FLASK_APP=powers.py
$ flask run
 * Serving Flask app "powers"
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

The last two lines are output from Flask. If you enter the URL in your browser, you should see the string
returned from powers. You could also supply a more specific path to your function. For example, if you use
route('/powers') instead of route('/'), the function would be available at http://127.0.0.1:5000/
powers. You could then set up multiple functions, each with its own URL.

You can even provide arguments to your function. You specify a parameter using angle brackets, so
you might use '/powers/<n>', for example. Whatever you specified after the slash would then be supplied
as a keyword argument named n. It would be a string, though, and in our case we want an integer. We can
add this conversion by using route('/powers/<int:n>'). Then, after restarting Flask, if you access the URL
http://127.0.0.1:5000/powers/3, you should get the output 1, 2, 4.

Flask has plenty of other features, and its documentation is highly readable. If you’d like to experiment
with simple server-side web app development, I recommend giving it a look.

Other Web Application Frameworks
There are plenty of other web frameworks available, both large and small. Some are rather obscure,
while others have regular conferences devoted to them. Some popular ones are listed in Table 15-2; for a
more comprehensive list, you should consult the Python web pages (https://wiki.python.org/moin/
WebFrameworks).

http://flask.pocoo.org/
https://wiki.python.org/moin/WebFrameworks
https://wiki.python.org/moin/WebFrameworks

Chapter 15 ■ Python and the Web

304

Web Services: Scraping Done Right
Web services are a bit like computer-friendly web pages. They are based on standards and protocols that
enable programs to exchange information across the network, usually with one program (the client or service
requester) asking for some information or service, and the other program (the server or service provider)
providing this information or service. Yes, this is glaringly obvious stuff, and it also seems very similar to the
network programming discussed in Chapter 14, but there are differences.

Web services often work on a rather high level of abstraction. They use HTTP (the “Web’s protocol”) as
the underlying protocol. On top of this, they use more content-oriented protocols, such as some XML format
to encode requests and responses. This means that a web server can be the platform for web services. As
the title of this section indicates, it’s web scraping taken to another level. You could see the web service as a
dynamic web page designed for a computerized client, rather than for human consumption.

There are standards for web services that go really far in capturing all kinds of complexity, but you can
get a lot done with utter simplicity as well. In this section, I give only a brief introduction to the subject, with
some pointers to where you can find the tools and information you might need.

■■ Note  As there are many ways of implementing web services, including a multitude of protocols, and each
web service system may provide several services, it can sometimes be necessary to describe a service in a
manner that can be interpreted automatically by a client—a metaservice, so to speak. The standard for this sort
of description is the Web Service Description Language (WSDL). WSDL is an XML format that describes such
things as which methods are available through a service, along with their arguments and return values. Many,
if not most, web service toolkits will include support for WSDL in addition to the actual service protocols, such
as SOAP.

RSS and Friends
RSS, which stands for either Rich Site Summary, RDF Site Summary, or Really Simple Syndication
(depending on the version number), is, in its simplest form, a format for listing news items in XML. What
makes RSS documents (or feeds) more of a service than simply a static document is that they’re expected
to be updated regularly (or irregularly). They may even be computed dynamically, representing, for
example, the most recent additions to a blog or the like. A newer format used for the same thing is Atom. For
information about RSS and its relative Resource Description Framework (RDF), see http://www.w3.org/RDF.
For a specification of Atom, see http://tools.ietf.org/html/rfc4287.

Table 15-2.  Python Web Application Frameworks

Name Web Site

Django https://djangoproject.com

TurboGears http://turbogears.org

web2py http://web2py.com

Grok https://pypi.python.org/pypi/grok

Zope2 https://pypi.python.org/pypi/Zope2

Pyramid https://trypyramid.com

http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://www.w3.org/RDF
http://tools.ietf.org/html/rfc4287
https://djangoproject.com
http://turbogears.org
http://web2py.com
https://pypi.python.org/pypi/grok
https://pypi.python.org/pypi/Zope2
https://trypyramid.com

Chapter 15 ■ Python and the Web

305

Plenty of RSS readers are out there, and often they can also handle other formats such as Atom. Because
the RSS format is so easy to deal with, developers keep coming up with new applications for it. For example,
some browsers (such as Mozilla Firefox) will let you bookmark an RSS feed and will then give you a dynamic
bookmark submenu with the individual news items as menu items. RSS is also the backbone of podcasting;
a podcast is essentially an RSS feed listing sound files.

The problem is that if you want to write a client program that handles feeds from several sites, you must
be prepared to parse several different formats, and you may even need to parse HTML fragments found in
the individual entries of the feed. Even though you could use BeautifulSoup (or one of its XML-oriented
versions) to tackle this, it’s probably a better idea to use Mark Pilgrim’s Universal Feed Parser (https://
pypi.python.org/pypi/feedparser), which handles several feed formats (including RSS and Atom, along
with some extensions) and has support for some degree of content cleanup. Pilgrim has also written a useful
article, “Parsing RSS At All Costs” (http://xml.com/pub/a/2003/01/22/dive-into-xml.html), in case you
want to deal with some of the cleanup yourself.

Remote Procedure Calls with XML-RPC
Beyond the simple download-and-parse mechanic of RSS lies the remote procedure call. A remote
procedure call is an abstraction of a basic network interaction. Your client program asks the server program
to perform some computation and return the result, but it is all camouflaged as a simple procedure (or
function or method) call. In the client code, it looks like an ordinary method is called, but the object on
which it is called actually resides on a different machine entirely. Probably the simplest mechanism for this
sort of procedure call is XML-RPC, which implements the network communication with HTTP and XML.
Because there is nothing language-specific about the protocol, it is easy for client programs written in one
language to call functions on a server program written in another.

■■ Tip  Try a web search to find plenty of other RPC options for Python.

The Python standard library includes support for both client-side and server-side XML-RPC programming.
For examples of using XML-RPC, see Chapters 27 and 28.

RPC AND REST

Even though the two mechanisms are rather different, remote procedure calls may be compared to the
so-called representational state transfer style of network programming, usually called REST. REST-
based (or RESTful) programs also allow clients to access the servers programmatically, but the server
program is assumed not to have any hidden state. Returned data is uniquely determined by the given
URL (or, in the case of HTTP POST, additional data supplied by the client).

More information about REST is readily available online. For example, you could start with the Wikipedia
article on it, at http://en.wikipedia.org/wiki/Representational_State_Transfer. A simple and
elegant protocol that is used quite a bit in RESTful programming is JavaScript Object Notation, or JSON
(http://www.json.org), which allows you to represent complex objects in a plain-text format. You can
find support for JSON in the json standard library module.

https://pypi.python.org/pypi/feedparser
https://pypi.python.org/pypi/feedparser
http://xml.com/pub/a/2003/01/22/dive-into-xml.html)
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_28
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.json.org/

Chapter 15 ■ Python and the Web

306

SOAP
SOAP2 is also a protocol for exchanging messages, with XML and HTTP as underlying technologies. Like
XML-RPC, SOAP supports remote procedure calls, but the SOAP specification is much more complex than
that of XML-RPC. SOAP is asynchronous, supports metarequests about routing, and has a complex typing
system (as opposed to XML-RPC’s simple set of fixed types).

There is no single standard SOAP toolkit for Python. You might want to consider Twisted
(http://twistedmatrix.com), ZSI (http://pywebsvcs.sf.net) or SOAPy (http://soapy.sf.net). For
more information about the SOAP format, see http://www.w3.org/TR/soap.

A Quick Summary
Here is a summary of the topics covered in this chapter:

Screen scraping: This is the practice of downloading web pages automatically
and extracting information from them. The Tidy program and its library version
are useful tools for fixing ill-formed HTML before using an HTML parser.
Another option is to use Beautiful Soup, which is very forgiving of messy input.

CGI: The Common Gateway Interface is a way of creating dynamic web pages, by
making a web server run and communicate with your programs and display the
results. The cgi and cgitb modules are useful for writing CGI scripts. CGI scripts
are usually invoked from HTML forms.

Flask: A simple web framework that lets you publish your code as a web
application, without worrying too much about the web part of things.

Web application frameworks: For developing large, complex web applications
in Python, a web application framework is almost a must. Flask is a good choice
for simpler projects. For larger projects, you might want to consider something
like Django or TurboGears.

Web services: Web services are to programs what (dynamic) web pages are
to people. You may see them as a way of making it possible to do network
programming at a higher level of abstraction. Common web service standards
are RSS (and its relatives, RDF and Atom), XML-RPC, and SOAP.

New Functions in This Chapter

Function Description

cgitb.enable() Enables tracebacks in CGI script

What Now?
I’m sure you’ve tested the programs you’ve written so far by running them. In the next chapter, you will learn
how you can really test them—thoroughly and methodically, maybe even obsessively (if you’re lucky).

2While the name once stood for Simple Object Access Protocol, this is no longer true. Now it’s just SOAP.

http://twistedmatrix.com/
http://pywebsvcs.sf.net/
http://soapy.sf.net/
http://www.w3.org/TR/soap

307© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_16

CHAPTER 16

Testing, 1-2-3

How do you know that your program works? Can you rely on yourself to write flawless code all the time?
Meaning no disrespect, I would guess that’s unlikely. It’s quite easy to write correct code in Python most of
the time, certainly, but chances are your code will have bugs.

Debugging is a fact of life for programmers—an integral part of the craft of programming. However, the
only way to get started debugging is to run your program. Right? And simply running your program might
not be enough. If you have written a program that processes files in some way, for example, you will need
some files to run it on. Or if you have written a utility library with mathematical functions, you will need to
supply those functions with parameters in order to get your code to run.

Programmers do this kind of thing all the time. In compiled languages, the cycle goes something like
“edit, compile, run,” around and around. In some cases, even getting the program to compile may be a
problem, so the programmer simply switches between editing and compiling. In Python, the compilation
step isn’t there—you simply edit and run. Running your program is what testing is all about.

In this chapter, I discuss the basics of testing. I give you some notes on how to let testing become one
of your programming habits and show you some useful tools for writing your tests. In addition to the testing
and profiling tools of the standard library, I show you how to use the code analyzers PyChecker and PyLint.

For more on programming practice and philosophy, see Chapter 19. There, I also mention logging,
which is somewhat related to testing.

Test First, Code Later
To plan for change and flexibility, which is crucial if your code is going to survive even to the end of your
own development process, it’s important to set up tests for the various parts of your program (so-called unit
tests). It’s also a very practical and pragmatic part of designing your application. Rather than the intuitive
“code a little, test a little” practice, the Extreme Programming crowd has introduced the highly useful, but
somewhat counterintuitive, dictum “test a little, code a little.”

In other words, test first and code later. This is also known as test-driven programming. While this
approach may be unfamiliar at first, it can have many advantages, and it does grow on you over time.
Eventually, once you’ve used test-driven programming for a while, writing code without having tests in place
may seem really backwards.

Precise Requirement Specification
When developing a piece of software, you must first know what problem the software should solve—what
objectives it should meet. You can clarify your goals for the program by writing a requirement specification,
a document (or just some quick notes) describing requirements the program must satisfy. It is then easy
to check at some later time whether the requirements are indeed satisfied. But many programmers dislike

http://dx.doi.org/10.1007/978-1-4842-0028-5_19

Chapter 16 ■ Testing, 1-2-3

308

writing reports and in general prefer to have their computer do as much of their work as possible. Here’s
good news: you can specify the requirements in Python and have the interpreter check whether they are
satisfied!

■■ Note  There are many types of requirements, including such vague concepts as client satisfaction. In this
section, I focus on functional requirements—that is, what is required of the program’s functionality.

The idea is to start by writing a test program and then write a program that passes the tests. The test program
is your requirement specification and helps you stick to those requirements while developing the program.

Let’s take a simple example. Suppose you want to write a module with a single function that will compute
the area of a rectangle with a given height and width. Before you start coding, you write a unit test with some
examples for which you know the answers. Your test program might look like the one in Listing 16-1.

Listing 16-1.  A Simple Test Program

from area import rect_area
height = 3
width = 4
correct_answer = 12
answer = rect_area(height, width)
if answer == correct_answer:
 print('Test passed ')
else:
 print('Test failed ')

In this example, I call the function rect_area (which I haven’t written yet) on the height 3 and width 4 and
compare the answer with the correct one, which is 12.1

If you then carelessly implement rect_area (in the file area.py) as follows and try to run the test
program, you would get an error message.

def rect_area(height, width):
 return height * height # This is wrong ...

You could then examine the code to see what was wrong and replace the returned expression with height *
width.

Writing a test before you write your code isn’t just a preparation for finding bugs—it’s a preparation
for seeing whether your code works at all. It’s a bit like the old Zen koan: “Does a tree falling in the forest
make a sound if no one is there to hear it?” Well, of course it does (sorry, Zen monks), but the sound doesn’t
have any impact on you or anyone else. With your code, the question is, “Until you test it, does it actually
do anything?” Philosophy aside, it can be useful to adopt the attitude that a feature doesn’t really exist (or
isn’t really a feature) until you have a test for it. Then you can clearly demonstrate that it’s there and is doing
what it’s supposed to do. This isn’t only useful while developing the program initially but also when you later
extend and maintain the code.

1Of course, testing only one case like this won’t give you much confidence in the correctness of the code. A real test
program would probably be a lot more thorough.

Chapter 16 ■ Testing, 1-2-3

309

Planning for Change
In addition to helping a great deal as you write the program, automated tests help you avoid accumulating
errors when you introduce changes, which is especially important as the size of your program grows. As
discussed in Chapter 19, you should be prepared to change your code, rather than clinging frantically to
what you have, but change has its dangers. When you change some piece of your code, you very often
introduce an unforeseen bug or two. If you have designed your program well (with appropriate abstraction
and encapsulation), the effects of a change should be local and affect only a small piece of the code. That
means that debugging is easier if you spot the bug.

CODE COVERAGE

The concept of coverage is an important part of testing lore. When you run your tests, chances are
you won’t run all parts of your code, even though that would be the ideal situation. (Actually, the ideal
situation would be to run through every possible state of your program, using every possible input, but
that’s really not going to happen.) One of the goals of a good test suite is to get good coverage, and one
way of ensuring that is to use a coverage tool, which measures the percentage of your code that was
actually run during the testing. At the time of writing, there is no really standardized coverage tool for
Python, but a web search for something like “test coverage python” should turn up a few options. One
option is the program trace.py, which comes with the Python distribution. You can run it as a program
on the command line (possibly using the -m switch, saving you the trouble of finding the file), or you can
import it as a module. For help on how to use it, you can either run the program with the --help switch
or import the module and execute help(trace) in the interpreter.

At times, you may feel overwhelmed by the requirement to test everything extensively. Don’t worry—you
don’t have to test hundreds of combinations of inputs and state variables, at least not to begin with. The
most important part of test-driven programming is that you actually run your method (or function or script)
repeatedly while coding, to get continual feedback on how you’re doing. If you want to increase your
confidence in the correctness of the code (as well as the coverage), you can always add more tests later.

The point is that if you don’t have a thorough set of tests handy, you may not even discover that you
have introduced a bug until later, when you no longer know how the error was introduced. And without
a good suite of tests, it is much harder to pinpoint exactly what is wrong. You can’t roll with the punches
unless you see them coming. One way of getting good test coverage is to follow the tenets of test-
driven programming. If you make sure that you have written the tests before you write the function, you
can be certain that every function is tested.

http://dx.doi.org/10.1007/978-1-4842-0028-5_19

Chapter 16 ■ Testing, 1-2-3

310

The 1-2-3 (and 4) of Testing
Before we get into the nitty-gritty of writing tests, here’s a breakdown of the test-driven development process
(or at least one version of it):

	 1.	 Figure out the new feature you want. Possibly document it and then write a test
for it.

	 2.	 Write some skeleton code for the feature so that your program runs without
any syntax errors or the like, but so your test still fails. It is important to see your
test fail, so you are sure that it actually can fail. If there is something wrong with
the test and it always succeeds no matter what (this has happened to me many
times), you aren’t really testing anything. This bears repeating: see your test fail
before you try to make it succeed.

	 3.	 Write dummy code for your skeleton, just to appease the test. This doesn’t have
to accurately implement the functionality; it just needs to make the test pass.
This way, you can have all your tests pass all the time when developing (except
the first time you run the test, remember?), even while initially implementing the
functionality.

	 4.	 Rewrite (or refactor) the code so that it actually does what it’s supposed to, all the
while making sure that your test keeps succeeding.

You should keep your code in a healthy state when you leave it—don’t leave it with any tests failing (or,
for that matter, succeeding with your dummy code still in place). Well, that’s what they say. I find that I
sometimes leave it with one test failing, which is the point at which I’m currently working, as a sort of “to-do”
or “continue here” for myself. This is really bad form if you’re developing together with others, though. You
should never check failing code into the common code repository.

Tools for Testing
You may think that writing a lot of tests to make sure that every detail of your program works correctly
sounds like a chore. Well, I have good news for you: there is help in the standard libraries (isn’t there
always?). Two brilliant modules are available to automate the testing process for you.

•	 unittest: A generic testing framework

•	 doctest: A simpler module, designed for checking documentation, but excellent for
writing unit tests as well

Let’s begin with a look at doctest, which is a great starting point.

doctest
Throughout this book, I use examples taken directly from the interactive interpreter. I find that this is an
effective way to show how things work, and when you have such an example, it’s easy to test it for yourself.
In fact, interactive interpreter sessions can be a useful form of documentation to put in docstrings. For
instance, let’s say I write a function for squaring a number and add an example to its docstring.

def square(x):
 '''
 Squares a number and returns the result.

Chapter 16 ■ Testing, 1-2-3

311

 >>> square(2)
 4
 >>> square(3)
 9
 '''
 return x * x

As you can see, I’ve included some text in the docstring, too. What does this have to do with testing? Let’s say
the square function is defined in the module my_math (that is, a file called my_math.py). Then you could add
the following code at the bottom:

if name =='__main__':
 import doctest, my_math
 doctest.testmod(my_math)

That’s not a lot, is it? You simply import doctest and the my_math module itself and then run the testmod
(for “test module”) function from doctest. What does this do? Let’s try it.

$ python my_math.py
$

Nothing seems to have happened, but that’s a good thing. The doctest.testmod function reads all the
docstrings of a module and seeks out any text that looks like an example from the interactive interpreter.
Then it checks whether the example represents reality.

■■ Note  If I were writing a real function here, I would (or should, according to the rules I laid down earlier)
first write the docstring, run the script with doctest to see the test fail, add a dummy version (for example using
if statements to deal with the specific inputs in the docstring) so that the test succeeds, and then start working
on getting the implementation right. On the other hand, if you’re going to do full-out “test first, code later”
programming, the unittest framework (discussed later) might suit your needs better.

To get some more input, you can just give the -v (for “verbose”) switch to your script.

$ python my_math.py -v

This command would result in the following output:

Running my_math.__doc__
0 of 0 examples failed in my_math.__doc__
Running my_math.square.__doc__
Trying: square(2)
Expecting: 4
Ok

Trying: square(3)
Expecting: 9
ok
0 of 2 examples failed in my_math.square.__doc__
1 items had no tests:

Chapter 16 ■ Testing, 1-2-3

312

 test
1 items passed all tests:
2 tests in my_math.square
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

As you can see, a lot happened behind the scenes. The testmod function checks both the module docstring
(which, as you can see, contains no tests) and the function docstring (which contains two tests, both of
which succeed).

With tests in place, you can safely change your code. Let’s say that you want to use the Python
exponentiation operator instead of plain multiplication and use x ** 2 instead of x * x. You edit the code
but accidentally forget to enter the number 2, ending up with x ** x. Try it, and then run the script to test
the code. What happens? This is the output you get:

Failure in example: square(3)
from line #5 of my_math.square
Expected: 9
Got: 27

1 items had failures:
 1 of 2 in my_math.square
Test Failed
1 failures.

So the bug was caught, and you get a very clear description of what is wrong. Fixing the problem shouldn’t
be difficult now.

■■ Caution  Don’t trust your tests blindly, and be sure to test enough cases. As you can see, the test using
square(2) does not catch the bug because for x == 2, x ** 2 and x ** x are the same thing!

For more information about the doctest module, you should again check out the library reference.

unittest
While doctest is very easy to use, unittest (based on the popular test framework JUnit, for Java) is more
flexible and powerful. unittest may have a steeper learning curve than doctest, but I suggest that you take
a look at this module, because it allows you to write very large and thorough test sets in a more structured
manner.

I will give you just a gentle introduction here. unittest includes some features that you probably won’t
need for most of your testing.

■■ Tip  A couple of interesting alternatives to the unit test tools in the standard library are pytest
(pytest.org) and nose (nose.readthedocs.io).

Chapter 16 ■ Testing, 1-2-3

313

Again, let’s take a look at a simple example. You’re going to write a module called my_math containing a
function for calculating products, called product. So where do you begin? With a test, of course (in a file
called test_my_math.py), using the TestCase class from the unittest module (see Listing 16-2).

Listing 16-2.  A Simple Test Using the unittest Framework

import unittest, my_math

class ProductTestCase(unittest.TestCase):

 def test_integers(self):
 for x in range(-10, 10):
 for y in range(-10, 10):
 p = my_math.product(x, y)
 self.assertEqual(p, x * y, 'Integer multiplication failed')

 def test_floats(self):
 for x in range(-10, 10):
 for y in range(-10, 10):
 x = x / 10
 y = y / 10
 p = my_math.product(x, y)
 self.assertEqual(p, x * y, 'Float multiplication failed')

if __name__ == '__main__': unittest.main()

The function unittest.main takes care of running the tests for you. It will instantiate all subclasses of
TestCase and run all methods whose names start with test.

■■ Tip  If you define methods called setUp and tearDown, they will be executed before and after each of the
test methods. You can use these methods to provide common initialization and cleanup code for all the tests, a
so-called test fixture.

Running this test script will, of course, simply give you an exception about the module my_math not
existing. Methods such as assertEqual check a condition to determine whether the given test succeeds
or fails. The TestCase class has many other similar methods, such as assertTrue, assertIsNotNone, and
assertAlmostEqual.

The unittest module distinguishes between errors, where an exception is raised, and failures,
which result from calls to failUnless and the like. The next step is to write skeleton code, so we don’t get
errors—only failures. This simply means creating a module called my_math (that is, a file called my_math.py)
containing the following:

def product(x, y):
 pass

Chapter 16 ■ Testing, 1-2-3

314

All filler, no fun. If you run the test now, you should get two FAIL messages, like this:

FF
==
FAIL: test_floats (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 17, in testFloats
 self.assertEqual(p, x * y, 'Float multiplication failed')
AssertionError: Float multiplication failed
==
FAIL: test_integers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.assertEqual(p, x * y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed

--
Ran 2 tests in 0.001s

FAILED (failures=2)

This was all expected, so don’t worry too much. Now, at least, you know that the tests are really linked to the
code—the code was wrong, and the tests failed. Wonderful.

The next step is to make it work. In this case, there isn’t much to it, of course:

def product(x, y):
 return x * y

Now the output is simply as follows:

..
--
Ran 2 tests in 0.015s
OK

The two dots at the top are the tests. If you look closely at the jumbled output from the failed version, you’ll
see two characters on the top there as well: two Fs, indicating two failures.

Just for fun, change the product function so that it fails for the specific parameters 7 and 9.

def product(x, y):
 if x == 7 and y == 9:
 return 'An insidious bug has surfaced!'
 else:
 return x * y

Chapter 16 ■ Testing, 1-2-3

315

If you run the test script again, you should get a single failure.

.F
==
FAIL: test_integers (__main__.ProductTestCase)
--
Traceback (most recent call last):
 File "test_my_math.py", line 9, in testIntegers
 self.assertEqual(p, x * y, 'Integer multiplication failed')
AssertionError: Integer multiplication failed
--
Ran 2 tests in 0.005s

FAILED (failures=1)

■■ Tip  For more advanced testing of object-oriented code, check out the module unittest.mock.

Beyond Unit Tests
Tests are clearly important, and for any somewhat complex project, they are absolutely vital. Even if you
don’t want to bother with structured suites of unit tests, you really must have some way of running your
program to see whether it works. Having this capability in place before you do any significant amount of
coding can save you a bundle of work (and pain) later.

There are other ways of probulating your program, and here I’ll show you several tools for doing just
that: source code checking and profiling. Source code checking is a way of looking for common mistakes or
problems in your code (a bit like what compilers can do for statically typed languages, but going far beyond
that). Profiling is a way of finding out how fast your program really is. I discuss the topics in this order to
honor the good old rule, “Make it work, make it better, make it faster.” The unit testing helped make it work;
source code checking can help make it better; and, finally, profiling can help make it faster.

Source Code Checking with PyChecker and PyLint
For quite some time, PyChecker (pychecker.sf.net) was the only tool for checking Python source code,
looking for mistakes such as supplying arguments that won’t work with a given function and so forth.
(All right, there was tabnanny, in the standard library, but that isn’t all that powerful, since it just checks
your indentation.) Then along came PyLint (pylint.org), which supports most of the features of PyChecker
and quite a few more (such as whether your variable names fit a given naming convention, whether you’re
adhering to your own coding standards, and the like).

Installing the tools is simple. They are both available from several package manager systems (such as
Debian APT and Gentoo Portage) and may also be downloaded directly from their respective web sites. You
install using Distutils, with the standard command.

python setup.py install

PyLint may also be installed using pip.

http://www.logilab.org/projects/pylint)

Chapter 16 ■ Testing, 1-2-3

316

Once this is done, the tools should be available as command-line scripts (pychecker and pylint for
PyChecker and PyLint, respectively) and as Python modules (with the same names).

■■ Note  In Windows, the two tools use the batch files pychecker.bat and pylint.bat as command-line
tools. You may need to add these to your PATH environment variable to have the pychecker and pylint
commands available on the command line.

To check files with PyChecker, you run the script with the file names as arguments, like this:

pychecker file1.py file2.py ...

With PyLint, you use the module (or package) names:

pylint module

You can get more information about both tools by running them with the -h command-line switch. When
you run either of these commands, you will probably get quite a bit of output (most likely more output from
pylint than from pychecker). Both tools are quite configurable with respect to which warnings you want to
get (or suppress); see their respective documentation for more information.

Before leaving the checkers, let’s see how you can combine them with unit tests. After all, it would be
very pleasant to have them (or just one of them) run automatically as a test in your test suite, and to silently
succeed if nothing is wrong. Then you could actually have a test suite that doesn’t just test functionality but
code quality as well.

Both PyChecker and PyLint can be imported as modules (pychecker.checker and pylint.lint,
respectively), but they aren’t really designed to be used programmatically. When you import pychecker.
checker, it will check the code that comes later (including imported modules), printing warnings to
standard output. The pylint.lint module has an undocumented function called Run, which is used in
the pylint script itself. This also prints out warnings rather than returning them in some way. Instead of
grappling with these issues, I suggest using PyChecker and PyLint in the way they’re meant to be used: as
command-line tools. And the way of using command-line tools in Python is the subprocess module. Listing
16-3 is an example of the earlier test script, now with two code-checking tests.

Listing 16-3.  Calling External Checkers Using the subprocess Module

import unittest, my_math
from subprocess import Popen, PIPE

class ProductTestCase(unittest.TestCase):

 # Insert previous tests here

 def test_with_PyChecker(self):
 cmd = 'pychecker', '-Q', my_math.__file__.rstrip('c')
 pychecker = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pychecker.stdout.read(), '')

 def test_with_PyLint(self):
 cmd = 'pylint', '-rn', 'my_math'

Chapter 16 ■ Testing, 1-2-3

317

 pylint = Popen(cmd, stdout=PIPE, stderr=PIPE)
 self.assertEqual(pylint.stdout.read(), '')

if __name__ == '__main__': unittest.main()

I’ve given some command-line switches to the checker programs, to avoid extraneous output that would
interfere with the tests. For pychecker, I have supplied the -Q (quiet) switch. For pylint, I have supplied -rn
(with n standing for “no”) to turn off reports, meaning that it will display only warnings and errors.

The pylint command runs directly with a module name supplied, so that’s pretty straightforward.
To get pychecker to work properly, we need to get a file name. To get that, I’ve used the __file__ property
of the my_math module, rstriping away any c that may be found at the end of the file name (because the
module may actually come from a .pyc file).

In order to appease PyLint (rather than configuring it to shut up about things such as short variable
names, missing revisions, and docstrings), I have rewritten the my_math module slightly.

"""
A simple math module.
"""
__revision__ = '0.1'

def product(factor1, factor2):
 'The product of two numbers'
 return factor1 * factor2

If you run the tests now, you should not get any errors. Try to play around with the code and see if you
can get any of the checkers to report errors while the functionality tests still work. (Feel free to drop either
PyChecker or PyLint—one is probably enough.) For example, try to rename the parameters back to x and y,
and PyLint should complain about short variable names. Or add print('Hello, world!') after the return
statement, and both checkers, quite reasonably, will complain (possibly giving different reasons for the
complaint) .

THE LIMITS OF AUTOMATIC CHECKING: WILL IT EVER END?

Though it can be amazing what an automatic checker such as PyChecker or PyLint can uncover, there
are limits to their capabilities. While they are quite impressive in the breadth of errors and problems they
can uncover, they can’t know what your program is ultimately intended to do; hence, there will always
be a need for custom-tailored unit tests. But beyond this obvious barrier, automatic checkers have
other limits. If you like slightly theoretical oddities, you might be interested in a result from the world of
computation theory known as the halting theorem. Let’s consider a hypothetical checker program that
we could run like this:

halts.py myprog.py data.txt

As you can probably guess, the checker should check the behavior of myprog.py when run on the input
data.txt. We want to check for only one thing: infinite loops (or anything equivalent). In other words,
the program halts.py should determine whether myprog.py would ever stop (halt) when run on data.
txt. Given that existing checker programs can analyze the code and figure out which types the various
variables must be for things to work, detecting such a simple thing as an infinite loop would seem like a
breeze, right? Sorry, but no, not in the general case, anyway.

Chapter 16 ■ Testing, 1-2-3

318

Don’t take my word for it—the reasoning is actually quite simple. Assume that we have a working
halting-checker, and assume (for simplicity) that it’s written as a Python module. Now, let’s assume that
we write the following little insidious program, named trouble.py.

import halts, sys
name = sys.argv[1]
if halts.check(name, name):
 while True: pass

It uses the functionality of the halts module to check whether a program given as the first command-
line argument will ever halt if supplied with itself as input. It could be run like this, for example:

trouble.py myprog.py

This would determine whether myprog.py would ever halt if supplied with myprog.py (that is, itself) as
input. If the determination is that it would halt, trouble.py will enter an infinite loop. Otherwise, it will
simply finish (that is, halt).

Now consider the following scenario:

halts.py trouble.py trouble.py

We’re checking whether trouble.py would halt with trouble.py (that is, itself) as input. Not so mind-
bending in itself. But what would the result be? If halts.py says “yes”—that is, trouble.py trouble.
py will halt—then trouble.py trouble.py is defined not to halt. We run into the same (converse)
problem if we get a “no.” Either way, halts.py is destined to get it wrong, and there is no way to fix
it. We began the story by assuming that the checker actually worked, and now we have reached a
contradiction, which means our assumption was wrong.

This doesn’t mean that we can’t detect any kinds of infinite looping, of course. Seeing a while True
without a break, raise, or return would be a strong clue, for example. It’s just not possible to detect
this in general. Sadly, many other similar properties can’t be automatically analyzed in the general case
either.2 So even with such nifty tools as PyChecker and PyLint, we’ll need to rely on manual debugging
rooted in our knowledge of the special circumstances of our program. And, perhaps, we should try to
avoid intentionally writing tricky programs such as trouble.py.

Profiling
Now that you’ve made your code work, and possibly made it better than the initial version, it may be time
to make it faster. Then, again, it may not. As Donald Knuth said, paraphrasing C. A. R. Hoare: “Premature
optimization is the root of all evil (or at least most of it) in programming.” Don’t worry about clever
optimization tricks if you don’t really, really need them. If the program is fast enough, chances are that the
value of clean, simple, understandable code is much higher than that of a slightly faster program. After all, in
a few months, faster hardware will probably be available anyway.

23. Check out Computers Ltd: What They Really Can’t Do by David Harel (Oxford University Press, 2000) for a lot of
interesting material on the subject.

Chapter 16 ■ Testing, 1-2-3

319

But if you do need to optimize your program, because it simply isn’t fast enough for your requirements,
you absolutely should profile it before doing anything else. That is because it’s really hard to guess where
the bottlenecks are, unless your program is really simple. And if you don’t know what’s slowing down your
program, chances are you’ll be optimizing the wrong thing.

The standard library includes a nice profiler module called profile, and a faster drop-in C version,
called cProfile. Using the profiler is straightforward. Just call its run method with a string argument.

>>> import cProfile
>>> from my_math import product
>>> cProfile.run('product(1, 2)')

This will give you a printout with information about how many times various functions and methods were
called and how much time was spent in the various functions. If you supply a file name, for example, 'my_
math.profile', as the second argument to run, the results will be saved to a file. You can then later use the
pstats module to examine the profile.

>>> import pstats
>>> p = pstats.Stats('my_math.profile')

Using this Stats object, you can examine the results programmatically. (For details on the API, consult the
standard library documentation.)

■■ Tip  The standard library also contains a module called timeit, which is a simple way of timing small
snippets of Python code. The timeit module isn’t really useful for detailed profiling, but it can be a nice tool
when all you want to do is figure out how much time a piece of code takes to execute. Trying to do this yourself
can often lead to inaccurate measurements (unless you know what you’re doing). Using timeit is usually a
better choice.

Now, if you’re really worried about the speed of your program, you could add a unit test that profiles your
program and enforces certain constraints (such as failing if the program takes more than a second to finish).
It might be a fun thing to do, but it’s not something I recommend. Obsessive profiling can easily take your
attention away from things that really matter, such as clean, understandable code. If the program is really
slow, you’ll notice that anyway, because your tests will take forever to finish.

A Quick Summary
Here are the main topics covered in the chapter:

Test-driven programming: Basically, test-driven programming means to test
first, code later. Tests let you rewrite your code with confidence, making your
development and maintenance more flexible.

The doctest and unittest modules: These are indispensable tools if you want to
do unit testing in Python. The doctest module is designed to check examples
in docstrings but can easily be used to design test suites. For more flexibility and
structure in your suites, the unittest framework is very useful.

Chapter 16 ■ Testing, 1-2-3

320

PyChecker and PyLint: These two tools read source code and point out
potential (and actual) problems. They check everything from short variable
names to unreachable pieces of code. With a little coding you can make them
(or one of them) part of your test suite to make sure all of your rewrites and
refactorings conform to your coding standards.

Profiling: If you really care about speed and want to optimize your program
(do this only if it’s absolutely necessary), you should profile it first. Use the
profile or cProfile module to find bottlenecks in your code.

New Functions in This Chapter

Function Description

doctest.testmod(module) Checks docstring examples. (Takes many more arguments.)

unittest.main() Runs the unit tests in the current module.

profile.run(stmt[, filename]) Executes and profiles statement. Optionally, saves results to filename.

What Now?
Now you’ve seen all kinds of things you can do with the Python language and the standard libraries. You’ve
seen how to probe and tweak your code until it screams (if you got serious about profiling, despite my
warnings). If you still aren’t getting the oomph you require, it’s time to pop the cover and tweak the engine
with some low-level tools.

321© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_17

CHAPTER 17

Extending Python

You can implement anything in Python, really; it’s a powerful language, but sometimes it can get a bit
too slow. For example, if you’re writing a scientific simulation of some form of nuclear reaction or you’re
rendering the graphics for the next Star Wars movie, writing the high-performance code in Python will
probably not be a good choice. Python is meant to be easy to work with and to help make the development
fast. The flexibility needed for this comes with a hefty price in terms of efficiency. It’s certainly fast enough
for most common programming tasks, but if you need real speed, languages such as C, C++, Java, or Julia can
usually beat it by several orders of magnitude.

The Best of Both Worlds
Now, I don’t want to encourage the speed freaks among you to start developing exclusively in C. Although
this may speed up the program itself, it will most certainly slow down your programming. So you need to
consider what is most important: getting the program done quickly or eventually (in the distant future)
getting a program that runs really, really fast. If Python is fast enough, the extra pain involved will make using
a low-level language such as C something of a meaningless choice (unless you have other requirements,
such as running on an embedded device that doesn’t have room for Python, or something like that).

This chapter deals with the cases where you do need extra speed. The best solution then probably
isn’t to switch entirely to C (or some other low- or mid-level language); instead, I recommend the following
approach, which has worked for plenty of industrial-strength speed freaks out there (in one form or another):

	 1.	 Develop a prototype in Python. (See Chapter 19 for some material on prototyping.)

	 2.	 Profile your program and determine the bottlenecks. (See Chapter 16 for some
material on testing.)

	 3.	 Rewrite the bottlenecks as a C (or C++, C#, Java, Fortran, and so on) extension.

The resulting architecture—a Python framework with one or more C components—is a very powerful one,
because it combines the best of two worlds. It’s a matter of choosing the right tools for each job. It affords you
the benefits of developing a complex system in a high-level language (Python), and it lets you develop your
smaller (and presumably simpler) speed-critical components in a low-level language (C).

■■ Note  There are other reasons for reaching for C. For example, if you want to write low-level code for
interfacing with a strange piece of hardware, you really have few alternatives.

http://dx.doi.org/10.1007/978-1-4842-0028-5_19
http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 17 ■ Extending Python

322

If you have some knowledge of what the bottlenecks of your system will be even before you begin, you can
(and probably should) design your prototype so that replacing the critical parts is easy. I think I might as well
state this in the form of a tip:

■■ Tip  Encapsulate potential bottlenecks.

You may find that you don’t need to replace the bottlenecks with C extensions (perhaps you suddenly got
hold of a faster computer), but at least the option is there.

There is another situation that is a common use case for extensions as well: legacy code. You may want
to use some code that exists only in, say, C. You can then “wrap” this code (write a small C library that gives
you a proper interface) and create a Python extension library from your wrapper.

In the following sections, I give you some starting points both for extending the classic C
implementation of Python, either by writing all the code yourself or by using a tool called SWIG, and for
extending two other implementations: Jython and IronPython. You will also find some hints about other
options for accessing external code. Read on . . .

THE OTHER WAY AROUND

In this chapter, I focus on writing extensions to your Python programs in a compiled language. But
turning this on its head—writing a program in a compiled language and embedding a Python interpreter
for minor scripting and extensions—can have its uses. In that case, what you’re after when embedding
Python isn’t speed—it’s flexibility. In many ways, it’s the same “best of both worlds” argument that is
used for writing compiled extensions; it’s just that the focus is shifted.

The embedding approach is used in many real-world systems. For example, many computer games
(which are almost invariably written in compiled languages, with a code base primarily developed for
maximum speed) use dynamic languages such as Python for describing high-level behavior (such as
the “intelligence” of the characters in the game), while the main code engine takes care of graphics and
the like.

The documentation referenced in the main text (for CPython, Jython, and IronPython) also discusses the
embedding option, in case you wish to go that route.

And if you want to use the fast, high-level language Julia (http://julialang.org) but still want access
to existing Python libraries, you can use the PyCall.jl library (https://github.com/stevengj/
PyCall.jl).

The Really Easy Way: Jython and IronPython
If you happen to be running Jython (http://jython.org) or IronPython (http://ironpython.net),
extending Python with native modules is quite easy. The reason for this is that Jython and IronPython give
you direct access to modules and classes from the underlying languages (Java for Jython, and C# and other
.NET languages for IronPython), so you don’t need to conform to some specific API (as you must when
extending CPython). You simply implement the functionality you need, and, as if by magic, it will work in
Python. As a case in point, you can access the Java standard libraries directly in Jython and the C# standard
libraries directly in IronPython.

http://julialang.org/
https://github.com/stevengj/PyCall.jl
https://github.com/stevengj/PyCall.jl
http://jython.org/
http://ironpython.net/

Chapter 17 ■ Extending Python

323

Listing 17-1 shows a simple Java class.

Listing 17-1.  A Simple Java Class (JythonTest.java)

public class JythonTest {

 public void greeting() {
 System.out.println("Hello, world!");
 }

}

You can compile this with some Java compiler, such as javac.

$ javac JythonTest.java

■■ Tip  If you’re working with Java, you can also use the command jythonc to compile your Python classes
into Java classes, which can then be imported into your Java programs.

Once you have compiled the class, you fire up Jython (and put the .class file either in your current directory
or somewhere in your Java CLASSPATH).

$ CLASSPATH=JythonTest.class jython

You can then import the class directly.

>>> import JythonTest
>>> test = JythonTest()
>>> test.greeting()
Hello, world!

See? There’s nothing to it.

JYTHON PROPERTY MAGIC

Jython has several nifty tricks up its sleeve when it comes to interacting with Java classes. One of the
most obviously useful is that it gives you access to so-called JavaBean properties through ordinary
attribute access. In Java, you use accessor methods to read or modify these. What this means is that
if the Java instance foo has a method called setBar, you can simply use foo.bar = baz instead of
foo.setBar(baz). Similarly, if the instance has a method called either getBar or isBar (for Boolean
properties), you can access the value using foo.bar. Using an example from the Jython documentation,
instead of this:

b = awt.Button()
b.setEnabled(False)

Chapter 17 ■ Extending Python

324

you could use this:

b = awt.Button()
b.enabled = False

In fact, all properties can be set through keyword arguments in constructors as well. So you could, in
fact, simply write this:

b = awt.Button(enabled=False)

This works with tuples for multiple arguments and even function arguments for Java idioms such as
event listeners.

def exit(event):
 java.lang.System.exit(0)
b = awt.Button("Close Me!", actionPerformed=exit)

In Java, you would need to implement a separate class with the proper actionPerformed method and
then add that using b.addActionListener.

Listing 17-2 shows a similar class in C#.

Listing 17-2.  A Simple C# Class (IronPythonTest.cs)

using System;
namespace FePyTest {
 public class IronPythonTest {

 public void greeting() {
 Console.WriteLine("Hello, world!");
 }

 }
}

Compile this with your compiler of choice. For Microsoft .NET, the command is as follows:

csc.exe /t:library IronPythonTest.cs

One way of using this in IronPython would be to compile the class to a dynamic link library (DLL; see the
documentation for your C# installation for details) and update the relevant environment variables
(such as PATH) as needed. Then you should be able to use it as in the following (using the IronPython
interactive interpreter):

>>> import clr
>>> clr.AddReferenceToFile("IronPythonTest.dll")
>>> import FePyTest
>>> f = FePyTest.IronPythonTest()
>>> f.greeting()

Chapter 17 ■ Extending Python

325

For more details on these implementations of Python, visit the Jython web site (http://jython.org) and the
IronPython web site (http://ironpython.net).

Writing C Extensions
This is what it’s all about, really. Extending Python normally means extending CPython, the standard version
of Python, implemented in the programming language C.

■■ Tip  For a basic introduction and some background material, see the Wikipedia article on C,
http://en.wikipedia.org/wiki/C_programming_language. For more information, check out Ivor Horton’s
book Beginning C: From Novice to Professional, Fifth Edition (Apress, 2013). A really authoritative source of
information is the all-time classic by Brian Kernighan and Dennis Ritchie, the inventors of the language:
C Programming Language, Second Edition (Prentice-Hall, 1988).

C isn’t quite as dynamic as Java or C#, and it’s not as easy for Python to figure out things for itself if you just
supply it with your compiled C code. Therefore, you need to adhere to a strict API when writing C extensions
for Python. I discuss this API a bit later, in the section “Hacking It on Your Own.” Several projects try to make
the process of writing C extensions easier, though, and one of the better-known projects is SWIG, which I
discuss in the following section. (See the sidebar “Other Approaches” for some … well … other approaches.)

OTHER APPROACHES

If you’re using CPython, plenty of tools are available to help you speed up your programs, either by
generating and using C libraries or by actually speeding up your Python code. Here is an overview of
some options:

•	 Cython (http://cython.org): This is actually a compiler for Python! It also offers the
extended Cython language, based on the older Pyrex project of Greg Ewing, which permits
you to add type declarations and define C types using a Python-like syntax. The result is
highly efficient, and it interacts nicely with C extension modules, including Numpy.

•	 PyPy (http://pypy.org): This is an ambitious and forward-looking implementation of
Python—in Python. While this might sound super-slow, it actually often, through quite
advanced code analysis and compilation, outperforms CPython. According to the web
site, “Rumors have it that the secret goal is being faster-than-C, which is nonsense,
isn’t it?” At the core of PyPy lies RPython, which is a restricted dialect of Python.
RPython is suited for automated type inference and the like, permitting translation
into static languages or native machine code, or to other dynamic languages (such as
JavaScript) , for that matter.

•	 Weave (http://scipy.org): Part of the SciPy distribution, but also available separately,
Weave is a tool for including C or C++ code directly in your Python code (as strings) and
having the code compiled and executed seamlessly. If you have certain mathematical
expressions you want to compute quickly, for example, then this might be the way to go.
Weave can also speed up expressions using numeric arrays (see the next item).

http://jython.org/
http://ironpython.net/
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/C_programming_language
http://cython.org/
http://pypy.org/
http://scipy.org/

Chapter 17 ■ Extending Python

326

•	 NumPy (http://numpy.org): NumPy gives you access to numeric arrays, which
are very useful for analyzing many forms of numeric data (from stock values to
astronomical images). One advantage is the simple interface, which relieves the need
to explicitly specify many low-level operations. The main advantage, however, is speed.
Performing many common operations on every element in a numeric array is much,
much faster than doing something equivalent with lists and for loops, because the
implicit loops are implemented directly in C. Numeric arrays work well with both Cython
and Weave.

•	 ctypes (https://docs.python.org/library/ctypes.html): The ctypes module
was originally a separate project by Thomas Heller, but it’s now part of the standard
library. It takes a very direct approach—it simply lets you import existing (shared) C
libraries. While there are some restrictions, this is, perhaps, one of the simplest ways
of accessing C code. There is no need for wrappers or special APIs. You just import the
library and use it.

•	 subprocess (https://docs.python.org/3/library/subprocess.html): Okay, this
one is a bit different. The subprocess module can be found in the standard library,
along with the older modules and functions with similar functionality. It allows you to
have Python run external programs and communicate with them through command-
line arguments and the standard input, output, and error streams. If your speed-critical
code can do much of its work in a few long-running batch jobs, little time will be lost
starting the program and communicating with it. In that case, simply placing your C
code in a completely separate program and running it as a subprocess could well be
the cleanest solution of all.

•	 PyCXX (http://cxx.sourceforge.net): Previously known as CXX, or CXX/Objects,
this is a set of C++ facilities for writing Python extensions. For example, it includes a
good deal of support for reference counting, to reduce the chances of making errors.

•	 SIP (http://www.riverbankcomputing.co.uk/software/sip): SIP (a pun on
SWIG?) was originally created as a tool for the development of the GUI package PyQt
and consists of a code generator and a Python module. It uses specification files in a
manner similar to SWIG.

•	 Boost.Python (http://www.boost.org/libs/python/doc): Boost.Python is designed
to enable seamless interoperability between Python and C++ and can give you great
help with issues such as reference counting and manipulating Python objects in
C++. One of the main ways of using it is to write C++ code in a rather Python-like
style (enabled by Boost.Python’s macros) and then compile that directly into Python
extensions using your favorite C++ compiler. As a rather different yet very solid
alternative to SWIG, this might certainly be worth a look.

A Swig of … SWIG
SWIG (http://www.swig.org), short for Simple Wrapper and Interface Generator, is a tool that works with
several languages. On the one hand, it lets you write your extension code in C or C++; on the other hand,
it automatically wraps these so that you can use them in several high-level languages such as Tcl, Python,
Perl, Ruby, and Java. This means that if you decide to write some of your system as a C extension, rather than
implement it directly in Python, the C extension library can also be made available (using SWIG) to a host

http://numpy.org/
https://docs.python.org/library/ctypes.html
https://docs.python.org/3/library/subprocess.html
http://cxx.sourceforge.net/
http://www.riverbankcomputing.co.uk/software/sip
http://www.boost.org/libs/python/doc
http://www.swig.org/

Chapter 17 ■ Extending Python

327

of other languages. This can be very useful if you want several subsystems written in different languages to
work together; your C (or C++) extension can then become a hub for the cooperation.

Installing SWIG follows the same pattern as installing other Python tools:

•	 You can get SWIG from the web site, http://www.swig.org.

•	 Many UNIX/Linux distributions come with SWIG. Many package managers will let
you install it directly.

•	 There is a binary installer for Windows.

•	 Compiling the sources yourself is again simply a matter of calling configure and
make install.

If you have problems installing SWIG, you should be able to find helpful information on the web site.

What Does It Do?
Using SWIG is a simple process, provided that you have some C code.

	 1.	 Write an interface file for your code. This is quite similar to C header files (and,
for simple cases, you can use your header file directly).

	 2.	 Run SWIG on the interface file in order to automatically produce some more C
code (wrapper code).

	 3.	 Compile the original C code together with the generated wrapper code in order
to generate a shared library.

In the following, I discuss each of these steps, starting with a bit of C code.

I Prefer Pi
A palindrome (such as the title of this section) is a sentence that is the same when read backwards, if you
ignore spaces and punctuation and the like. Let’s say you want to recognize huge palindromes, without the
allowance for whitespace and friends. (Perhaps you need it for analyzing a protein sequence or something.)
Of course, the string would have to be really big for this to be a problem for a pure Python program, but let’s
say the strings are really big and that you need to do a whole lot of these checks. You decide to write a piece
of C code to deal with it (or perhaps you find some finished code—as mentioned, using existing C code in
Python is one of the main uses of SWIG). Listing 17-3 shows a possible implementation.

Listing 17-3.  A Simple C Function for Detecting a Palindrome (palindrome.c)

#include <string.h>

int is_palindrome(char *text) {
 int i, n=strlen(text);
 for (i = 0; I <= n/2; ++i) {
 if (text[i] != text[n-i-1]) return 0;
 }
 return 1;
}

http://www.swig.org/

Chapter 17 ■ Extending Python

328

Just for reference, an equivalent pure Python function is shown in Listing 17-4.

Listing 17-4.  Detecting Palindromes in Python

def is_palindrome(text):
 n = len(text)
 for i in range(len(text) // 2):
 if text[i] != text[n-i-1]:
 return False
 return True

You’ll see how to compile and use the C code in a bit.

The Interface File
Assuming that you put the code from Listing 17-3 in a file called palindrome.c, you should now put an
interface description in a file called palindrome.i. In many cases, if you define a header file (that is,
palindrome.h), SWIG may be able to get the information it needs from that. So if you have a header file, feel
free to try to use it. One of the reasons for explicitly writing an interface file is that you can tweak how SWIG
actually wraps the code; the most important tweak is excluding things. For example, if you’re wrapping a
huge C library, perhaps you just want to export a couple of functions to Python. In that case, you put only the
functions you want to export in the interface file.

In the interface file, you simply declare all the functions (and variables) you want to export, just like in
a header file. In addition, there is a section at the top (delimited by %{ and %}) where you specify included
header files (such as string.h in our case) and, before even that, a %module declaration, giving the name of
the module. (Some of this is optional, and there is a lot more you can do with interface files; see the SWIG
documentation for more information.) Listing 17-5 shows this interface file.

Listing 17-5.  Interface to the Palindrome Library (palindrome.i)

%module palindrome

%{
#include <string.h>
%}

extern int is_palindrome(char *text);

Running SWIG
Running SWIG is probably the easiest part of the process. Although many command-line switches are
available (try running swig -help for a list of options), the only one needed is the python option, to make
sure SWIG wraps your C code so you can use it in Python. Another option you may find useful is -c++, which
you use if you’re wrapping a C++ library. You run SWIG with the interface file (or, if you prefer, a header file)
like this:

$ swig -python palindrome.i

After this, you should have two new files: one called palindrome_wrap.c and one called palindrome.py.

Chapter 17 ■ Extending Python

329

Compiling, Linking, and Using
Compiling is, perhaps, the trickiest part (at least I think so). In order to compile things properly, you need
to know where you keep the source code of your Python distribution (or, at least, the header files called
pyconfig.h and Python.h; you will probably find these in the root directory of your Python installation
and in the Include subdirectory, respectively). You also need to figure out the correct switches to compile
your code into a shared library with your C compiler of choice. If you’re having trouble finding the right
combination of arguments and switches, take a look at the next section “A Shortcut Through the Magic
Forest of Compilers.”

Here is an example for Solaris using the cc compiler, assuming that $PYTHON_HOME points to the root of
Python installation:

$ cc -c palindrome.c
$ cc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
$ cc -G palindrome.o palindrome_wrap.o -o _palindrome.so

Here is the sequence for using the gcc compiler in Linux:

$ gcc -c palindrome.c
$ gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -c palindrome_wrap.c
$ gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

It may be that all the necessary include files are found in one place, such as /usr/include/python3.5
(update the version number as needed). In this case, the following should do the trick:

$ gcc -c palindrome.c
$ gcc -I/usr/include/python3.5 -c palindrome_wrap.c
$ gcc -shared palindrome.o palindrome_wrap.o -o _palindrome.so

In Windows (again assuming that you’re using gcc on the command line), you could use the following
command as the last one, for creating the shared library:

$ gcc -shared palindrome.o palindrome_wrap.o C:/Python25/libs/libpython25.a -o_palindrome.dll

In macOS, you could do something like the following (where PYTHON_HOME would be /Library/Frameworks/
Python.framework/Versions/Current if you’re using the official Python installation):

$ gcc -dynamic -I$PYTHON_HOME/include/python3.5 -c palindrome.c
$ gcc -dynamic -I$PYTHON_HOME/include/python3.5 -c palindrome_wrap.c
$ gcc -dynamiclib palindrome_wrap.o palindrome.o -o _palindrome.so -Wl, -undefined, dynamic_
lookup

■■ Note  If you use gcc on Solaris, add the flag -fPIC to the first two command lines (right after the
command gcc). Otherwise, the compiler will become mighty confused when you try to link the files in the last
command. Also, if you’re using a package manager (as is common in many Linux platforms), you may need to
install a separate package (called something like python-dev) to get the header files needed to compile your
extensions.

Chapter 17 ■ Extending Python

330

After these darkly magical incantations, you should end up with a highly useful file called _palindrome.
so. This is your shared library, which can be imported directly into Python (if it’s put somewhere in your
PYTHONPATH, such as in the current directory):

>>> import _palindrome
>>> dir(_palindrome)
['__doc__', '__file__', '__name__', 'is_palindrome']
>>> _palindrome.is_palindrome('ipreferpi')
1
>>> _palindrome.is_palindrome('notlob')
0

In older versions of SWIG, that would have been all there was to it. Recent versions of SWIG, however,
generate some wrapping code in Python as well (the file palindrome.py, remember?). This wrapper code
imports the _palindrome module and takes care of a bit of checking. If you would rather skip that, you could
just remove the palindrome.py file and link your library directly into a file named palindrome.so.

Using the wrapper code works just as well as using the shared library.

>>> import palindrome
>>> from palindrome import is_palindrome
>>> if is_palindrome('abba'):
... print('Wow -- that never occurred to me ...')
...
Wow -- that never occurred to me ...

A Shortcut Through the Magic Forest of Compilers
If you think the compilation process can be a bit arcane, you’re not alone. And if you automate the
compilation (say, using a makefile), users will need to configure the setup by specifying where their Python
installation is, which specific options to use with their compiler, and, not the least, which compiler to use.
You can avoid this elegantly by using Setuptools. In fact, it has direct support for SWIG, so you don’t even
need to run that manually. You just write the code and the interface file and run your setup script. For more
information about this magic, see the section “Compiling Extensions” in Chapter 18.

Hacking It on Your Own
SWIG does quite a bit of magic behind the scenes, but not all of it is strictly necessary. If you want to get close
to the metal and grind your teeth on the processor, so to speak, you can certainly write your wrapper code
yourself or simply write your C code so that it uses the Python C API directly.

The Python C API has its own manual, the Python/C API Reference Manual (https://docs.python.
org/3/c-api). A gentler introduction can be found in the relevant section of the standard library manual
(https://docs.python.org/3/extending). I’ll try to be even gentler (and briefer) here. If you’re curious
about what I’m leaving out (which is rather a lot), you should take a look at the official documentation.

http://dx.doi.org/10.1007/978-1-4842-0028-5_18
https://docs.python.org/3/c-api
https://docs.python.org/3/c-api
https://docs.python.org/3/extending

Chapter 17 ■ Extending Python

331

Reference Counting
If you haven’t worked with it before, reference counting will probably be one of the most foreign concepts you’ll
encounter in this section, although it’s not really all that complicated. In Python, memory use is dealt with
automatically—you just create objects, and they disappear when you no longer use them. In C, this isn’t the
case. You must explicitly deallocate objects (or, rather, chunks of memory) that you’re no longer using. If you
don’t, your program may start hogging more and more memory, and you have what’s called a memory leak.

When writing Python extensions, you have access to the same tools Python uses “under the hood”
to manage memory, one of which is reference counting. The idea is that as long as some parts of your
code have references to an object (that is, in C-speak, pointers pointing to it), it should not be deallocated.
However, once the number of references to an object hits zero, the number can no longer increase—there
is no code that can create new references to it, and it’s just “free floating” in memory. At this point, it’s safe
to deallocate it. Reference counting automates this process. You follow a set of rules where you increment
or decrement the reference count for an object under various circumstances (through a part of the Python
API), and if the count ever goes to zero, the object is automatically deallocated. This means that no single
piece of code has the sole responsibility for managing an object. You can create an object, return it from a
function, and forget about it, safe in the knowledge that it will disappear when it is no longer needed.

You use two macros, called Py_INCREF and Py_DECREF, to increment and decrement the reference
count of an object, respectively. You can find detailed information about how to use these in the Python
documentation, but here is the gist of it:

•	 You can’t own an object, but you can own a reference to it. The reference count of an
object is the number of owned references to that object.

•	 If you own a reference, you are responsible for calling Py_DECREF when you no longer
need the reference.

•	 If you borrow a reference temporarily, you should not call Py_DECREF when you’re
finished with the object; that’s the responsibility of the owner.

■■ Caution  You should certainly never use a borrowed reference after the owner has disposed of it. See the
“Thin Ice” sections in the documentation for some more advice on staying safe. 

•	 You can turn a borrowed reference into an owned reference by calling Py_INCREF.
This creates a new owned reference; the original owner still owns the original
reference.

•	 When you receive an object as a parameter, it’s up to you whether you want the
ownership of its reference transferred (for example, if you’re going to store it
somewhere) or you simply want to borrow it. This should be documented clearly. If
your function is called from Python, it’s safe to simply borrow—the object will live
for the duration of the function call. If, however, your function is called from C, this
cannot be guaranteed, and you might want to create an owned reference and then
release it when you’re finished.

Hopefully, this will all seem clearer when we get down to a concrete example in a little while.

Chapter 17 ■ Extending Python

332

MORE GARBAGE COLLECTION

Reference counting is a form of garbage collection, where the term garbage refers to objects that are no
longer of use to the program. Python also uses a more sophisticated algorithm to detect cyclic garbage;
that is, objects that refer only to each other (and thus have nonzero reference counts) but have no other
objects referring to them.

You can access the Python garbage collector in your Python programs, through the gc module. You
can find more information about it in the Python Library Reference (https://docs.python.org/3/
library/gc.html).

A Framework for Extensions
Quite a lot of cookie-cutter code is needed to write a Python C extension, which is why tools such as SWIG
and Cython are so nice. Automating cookie-cutter code is the way to go. Doing it by hand can be a great
learning experience, though. You do have quite some leeway in how you structure your code, really. I’ll just
show you a way that works.

The first thing to remember is that the Python.h header file must be included first, before other
standard header files. That is because it may, on some platforms, perform some redefinitions that should be
used by the other headers. So, for simplicity, just place this:

#include <Python.h>

as the first line of your code.

Your function can be called anything you want. It should be static, return a pointer (an owned reference)
to an object of the PyObject type, and take two arguments, both also pointers to PyObject. The objects are
conventionally called self and args (with self being the self-object, or NULL, and args being a tuple of
arguments). In other words, the function should look something like this:

static PyObject *somename(PyObject *self, PyObject *args) {
 PyObject *result;
 /* Do something here, including allocating result. */

 Py_INCREF(result); /* Only if needed! */
 return result;
}

The self argument is actually used only in bound methods. In other functions, it will simply be a
NULL pointer.

Note that the call to Py_INCREF may not be needed. If the object is created in the function (for example,
using a utility function such as Py_BuildValue), the function will already own a reference to it and can
simply return it. If, however, you wish to return None from your function, you should use the existing
object Py_None. In this case, however, the function does not own a reference to Py_None and so should call
Py_INCREF(Py_None) before returning it.

The args parameter contains all the arguments to your function (except, if present, the self argument).
In order to extract the objects, you use the function PyArg_ParseTuple (for positional arguments) and PyArg_
ParseTupleAndKeywords (for positional and keyword arguments). I’ll stick to positional arguments here.

https://docs.python.org/3/library/gc.html
https://docs.python.org/3/library/gc.html

Chapter 17 ■ Extending Python

333

The function PyArg_ParseTuple has the following signature:

int PyArg_ParseTuple(PyObject *args, char *format, ...);

The format string describes the arguments you’re expecting, and then you supply the addresses of the
variables you want populated at the end. The return value is a Boolean value. If it’s true, everything went
well; otherwise, there was an error. If there was an error, the proper preparations for raising an exception will
have been made (you can learn more about that in the documentation), and all you need to do is to return
NULL to set the process off. So, if you’re not expecting any arguments (an empty format string), the following
is a useful way of handling arguments:

if (!PyArg_ParseTuple(args, "")) {
 return NULL;
}

If the code proceeds beyond this statement, you know you have your arguments (in this case, no arguments).
Format strings can look like "s" for a string, "i" for an integer, "o" for a Python object, with possible
combinations such as "iis" for two integers and a string. There are many more format string codes. A full
reference of how to write format strings can be found in the Python/C API Reference Manual (https://
docs.python.org/3/c-api/arg.html).

■■ Note  You can create your own built-in types and classes in extension modules, too. It’s not too hard, really,
but still a rather involved subject. If you mainly need to factor out some bottleneck code into C, using functions
will probably be enough for most of your needs anyway. If you want to learn how to create types and classes,
the Python documentation is a good source of information.

Once you have your function in place, some extra wrapping is still needed to make your C code act as a
module. But let’s get back to that once we have a real example to work with, shall we?

Palindromes, Detartrated1 for Your Enjoyment
Without further ado, I give you the hand-coded Python C API version of the palindrome module (with some
interesting new stuff added) in Listing 17-6.

Listing 17-6.  Palindrome Checking Again (palindrome2.c)

#include <Python.h>

static PyObject *is_palindrome(PyObject *self, PyObject *args) {
 int i, n;
 const char *text;
 int result;
 /* "s" means a single string: */

1That is, the tartrates have been removed. Okay, so the word is totally irrelevant to the code (and more relevant to fruit
juices), but at least it’s a palindrome.

https://docs.python.org/3/c-api/arg.html
https://docs.python.org/3/c-api/arg.html

Chapter 17 ■ Extending Python

334

 if (!PyArg_ParseTuple(args, "s", &text)) {
 return NULL;
 }
 /* The old code, more or less: */
 n=strlen(text);
 result = 1;
 for (i = 0; i <= n/2; ++i) {
 if (text[i] != text[n-i-1]) {
 result = 0;
 break;
 }
 }
 /* "i" means a single integer: */
 return Py_BuildValue("i", result);
}

/* A listing of our methods/functions: */
static PyMethodDef PalindromeMethods[] = {

 /* name, function, argument type, docstring */
 {"is_palindrome", is_palindrome, METH_VARARGS, "Detect palindromes"},
 /* An end-of-listing sentinel: */
 {NULL, NULL, 0, NULL}

};

static struct PyModuleDef palindrome =
{
 PyModuleDef_HEAD_INIT,
 "palindrome", /* module name */
 "", /* docstring */
 -1, /* signals state kept in global variables */
 PalindromeMethods
};

/* An initialization function for the module: */
PyMODINIT_FUNC PyInit_palindrome(void)
{
 return PyModule_Create(&palindrome);
}

Most of the added stuff in Listing 17-6 is total boilerplate. Where you see palindrome, you could insert the
name of your module. Where you see is_palindrome, insert the name of your function. If you have more
functions, simply list them all in the PyMethodDef array. One thing is worth noting, though: the name of the
initialization function must be initmodule, where module is the name of your module; otherwise, Python
won’t find it.

So, let’s compile! You do this just as described in the section on SWIG, except that there is only one file
to deal with now. Here is an example using gcc (remember to add -fPIC in Solaris):

$ gcc -I$PYTHON_HOME -I$PYTHON_HOME/Include -shared palindrome2.c -o palindrome.so

Chapter 17 ■ Extending Python

335

Again, you should have a file called palindrome.so, ready for your use. Put it somewhere in your PYTHONPATH
(such as the current directory) and away we go:

>>> from palindrome import is_palindrome
>>> is_palindrome('foobar')
0
>>> is_palindrome('deified')
1

And that’s it. Now go play. (But be careful; remember the Waldi Ravens quote from this book’s introduction.)

A Quick Summary
Extending Python is a huge subject. The tiny glimpse provided by this chapter included the following:

Extension philosophy: Python extensions are useful mainly for two things: for
using existing (legacy) code or for speeding up bottlenecks. If you’re writing
your own code from scratch, try to prototype it in Python, find the bottlenecks,
and factor them out as extensions if needed. Encapsulating potential bottlenecks
beforehand can be useful.

Jython and IronPython: Extending these implementations of Python is quite
easy. You simply implement your extension as a library in the underlying
implementation (Java for Jython and C# or some other .NET language for
IronPython) and the code is immediately usable from Python.

Extension approaches: Plenty of tools are available for extending or speeding
up your code. You can find tools for making the incorporation of C code into your
Python program easier, for speeding up common operations such as numeric
array manipulation and for speeding up Python itself. Such tools include SWIG,
Cython, Weave, NumPy, ctypes and subprocess.

SWIG: SWIG is a tool for automatically generating wrapper code for your C
libraries. The wrapper code takes care of the Python C API so you don’t have
to deal with it. SWIG is one of the easiest and most popular ways of extending
Python.

Using the Python/C API: You can write C code yourself that can be imported
directly into Python as shared libraries. To do this, you must adhere to the
Python/C API. Things you need to take care of for each function include reference
counting, extracting arguments, and building return values. There is also a certain
amount of code needed to make a C library work as a module, including listing
the functions in the module and creating a module initialization function.

Chapter 17 ■ Extending Python

336

New Functions in This Chapter

Function Description

Py_INCREF(obj) Increments reference count of obj

Py_DECREF(obj) Decrements reference count of obj

PyArg_ParseTuple(args, fmt, ...) Extracts positional arguments

PyArg_ParseTupleAndKeywords(args, kws, fmt, kwlist) Extracts positional and keyword arguments

PyBuildValue(fmt, value) Builds a PyObject from a C value

What Now?
Now you should have either some really cool programs or at least some really cool program ideas. Once you
have something you want to share with the world (and you do want to share your code with the world, don’t
you?), the next chapter can be your next step.

337© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_18

CHAPTER 18

Packaging Your Programs

Once your program is ready for release, you will probably want to package it properly before distributing it.
If it consists of a single .py file, this might not be much of an issue. If you’re dealing with nonprogrammer
users, however, even placing a simple Python library in the right place or fiddling with the PYTHONPATH may
be more than they want to deal with. Users normally want to simply double-click an installation program,
follow some installation wizard, and then have your program ready to run.

Lately, Python programmers have also become used to a similar convenience, although with a slightly
more low-level interface. The Setuptools toolkit, and the older Distutils, for distributing Python packages
makes it easy to write install scripts in Python. You can use these scripts to build archive files for distribution,
which the programmer (user) can then use for compiling and installing your libraries.

In this chapter, I focus on Setuptools, because it is an essential tool in every Python programmer’s
toolkit. And Setuptools actually goes beyond the script-based installation of Python libraries. It’s also quite
convenient for compiling extensions, and with the extensions py2exe and py2app, you can even build
stand-alone Windows and macOS executable programs.

Setuptools Basics
You can find lots of relevant documentation in the Python Packaging User Guide (packaging.python.org)
and on the Setuptools web site (http://setuptools.readthedocs.io). You can use Setuptools to do all
manner of useful things by writing a script as simple as the one shown in Listing 18-1. (If you don’t already
have Setuptools, you can install it using pip.)

Listing 18-1.  Simple Setuptools Setup Script (setup.py)

from setuptools import setup

setup(name='Hello',
 version='1.0',
 description='A simple example',
 author='Magnus Lie Hetland',
 py_modules=['hello'])

You don’t really have to supply all of this information in the setup function (you don’t actually need to
supply any arguments at all), and you certainly can supply more (such as author_email or url). The names
should be self-explanatory. Save the script in Listing 18-1 as setup.py (this is a universal convention for
Distutils setup scripts), and make sure that you have a simple module called hello.py in the same directory.

http://setuptools.readthedocs.io/

Chapter 18 ■ Packaging Your Programs

338

■■ Caution  The setup script will create new files and subdirectories in the current directory when you run it,
so you should probably experiment with it in a fresh directory to avoid having old files being overwritten.

Now let’s see how you can put this simple script to use. Execute it as follows:

python setup.py

You should get some output like the following:

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

error: no commands supplied

As you can see, you can get more information using the --help or --help-commands switch. Try issuing the
build command, just to see Setuptools in action.

python setup.py build

You should now see output like the following:

running build
running build_py
creating build
creating build/lib
copying hello.py -> build/lib

Setuptools has created a directory called build, with a subdirectory named lib, and placed a copy of hello.
py in build/lib. The build subdirectory is a sort of working area where Setuptools assembles a package
(and compiles extension libraries, for example). You don’t really need to run the build command when
installing, because it will be run automatically, if needed, when you run the install command.

■■ Note  In this example, the install command will copy the hello.py module to some system-specific
directory in your PYTHONPATH. This should not pose a risk, but if you don’t want to clutter your system, you
might want to remove it afterward. Make a note of the specific location where it is placed, as output by setup.
py. You could also use the -n switch to do a dry run. At the time of writing, there is no standard uninstall
command (although you can find custom uninstallation implementations online), so you’ll need to uninstall the
module by hand.

Speaking of which . . . let’s try to install the module.

python setup.py install

Chapter 18 ■ Packaging Your Programs

339

Now you should see quite a bit of output, ending with something like the following:

Installed /path/to/python3.5/site-packages/Hello-1.0-py3.5.egg
Processing dependencies for Hello==1.0
Finished processing dependencies for Hello==1.0 byte-compiling

■■ Note  If you’re running a version of Python that you didn’t install yourself and don’t have the proper
privileges, you may not be allowed to install the module as shown, because you don’t have write permissions to
the correct directory.

This is the standard mechanism used to install Python modules, packages, and extensions. All you need to
do is provide the little setup script. As you can see, as part of the installation process, Setuptools has built an
egg, a self-contained bundled Python package.

The sample script uses only the Setuptools directive py_modules. If you want to install entire packages,
you can use the directive packages in an equivalent manner (just list the package names). You can set many
other options as well (some of which are covered in the section “Compiling Extensions” later in this chapter).
These options let you specify such things as what to install and where to install it. And your configuration can
be used for more than one thing. The following section shows you how to wrap the modules you specified
for installation as an archive file, ready for distribution.

Wrapping Things Up
Once you’ve written a setup.py script that will let the user install your modules, you can use it yourself to build
an archive file, for example. You can also construct a Windows installer, an RPM package, an egg distribution,
or a wheel distribution, among other things. (Wheels are intended to replace eggs, eventually.) I’ll just walk you
through the .tar.gz example, and you should easily pick up the other formats from the documentation.

You build a source archive file the sdist (for “source distribution”) command.

python setup.py sdist

If you run this, you will probably get quite a bit of output, including some warnings. The warnings I get
include a complaint about a missing author_email option, a missing README file, and a missing URL. You
can safely ignore all of these (although feel free to add an author_email option to your setup.py script,
similar to the author option, and a README.txt text file in the current directory).

After the warnings you should see output like the following:

creating Hello-1.0/Hello.egg-info
making hard links in Hello-1.0...
hard linking hello.py -> Hello-1.0
hard linking setup.py -> Hello-1.0
hard linking Hello.egg-info/PKG-INFO -> Hello-1.0/Hello.egg-info
hard linking Hello.egg-info/SOURCES.txt -> Hello-1.0/Hello.egg-info
hard linking Hello.egg-info/dependency_links.txt -> Hello-1.0/Hello.egg-info
hard linking Hello.egg-info/top_level.txt -> Hello-1.0/Hello.egg-info
Writing Hello-1.0/setup.cfg
Creating tar archive
removing 'Hello-1.0' (and everything under it)

Chapter 18 ■ Packaging Your Programs

340

Now, in addition to the build subdirectory, you should have one called dist. Inside it, you will find a gzip’ed
tar archive called Hello-1.0.tar.gz. This can be distributed to others, and they can unpack it and install
it using the included setup.py script. If you don’t want a .tar.gz file, several other distribution formats
are available, and you can set them all through the command-line switch --formats. (As the plural name
indicates, you can supply more than one format, separated by commas, to create more archive files in one
go.) You get a list of the available formats with the --help-formats switch to the sdist.

Compiling Extensions
In Chapter 17, you saw how to write extensions for Python. You may agree that compiling these extensions
could be a bit cumbersome at times. Luckily, you can use Distutils for this as well. You may want to refer
to Chapter 17 for the source code to the program palindrome (in Listing 17-6). Assuming that you have the
source file palindrome2.c in the current (empty) directory, the following setup.py script could be used to
compile (and install) it:

from setuptools import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('palindrome', ['palindrome2.c'])
])

If you run the install command with this setup.py script, the palindrome extension module should be
compiled automatically before it is installed. As you can see, instead of specifying a list of module names,
you give the ext_modules argument a list of Extension instances. The constructor takes a name and a list of
related files; this is where you would specify header (.h) files, for example.

If you would rather just compile the extension in place (resulting in a file called palindrome.so in the
current directory for most UNIX systems), you can use the following command:

python setup.py build_ext --inplace

Now we get to a real juicy bit. If you have SWIG installed (see Chapter 17), you can have Setuptools use it
directly!

Take a look at the source for the original palindrome.c (without all the wrapping code) in Listing 17-3.
It’s certainly much simpler than the wrapped-up version. Being able to compile it directly as a Python
extension, having Distutils use SWIG for you, can be very convenient. It’s all very simple, really—you just add
the name of the interface (.i) file (see Listing 17-5) to the list of files in the Extension instance.

from setuptools import setup, Extension

setup(name='palindrome',
 version='1.0',
 ext_modules = [
 Extension('_palindrome', ['palindrome.c',
 'palindrome.i'])
])

http://dx.doi.org/10.1007/978-1-4842-0028-5_17
http://dx.doi.org/10.1007/978-1-4842-0028-5_17
http://dx.doi.org/10.1007/978-1-4842-0028-5_17

Chapter 18 ■ Packaging Your Programs

341

If you run this script using the same command as before (build_ext, possibly with the --inplace switch),
you should end up with an .so file again (or some equivalent), but this time without needing to write all the
wrapper code yourself. Note that I have named the extension _palindrome, as SWIG will create a wrapper
named palindrom.py that imports a C library by this name.

Creating Executable Programs with py2exe
The py2exe extension to Setuptools (available via pip) allows you to build executable Windows programs
(.exe files), which can be useful if you don’t want to burden your users with having to install a Python
interpreter separately. The py2exe package can be used to create executables with GUIs (as described in
Chapter 12). Let’s use a very simple example here:

print('Hello, world!')
input('Press <enter>')

Again, starting in an empty directory containing only this file, called hello.py, create a setup.py file like this:

from distutils.core import setup
import py2exe

setup(console=['hello.py'])

You can run this script like this:

python setup.py py2exe

This will create a console application (called hello.exe) along with a couple of other files in the dist
subdirectory. You can either run it from the command line or double-click it.

For more information about how py2exe works and how you can use it in more advanced ways, visit
the py2exe web site (http://www.py2exe.org). If you’re using macOS, you might want to check out py2app
(http://pythonhosted.org/py2app), which provides similar functionality for that platform.

REGISTERING YOUR PACKAGE WITH PYPI

If you want others to be able to install your package using pip, you must register it with the Python
Package Index, PyPI. The standard library documentation describes how this works in detail, but
essentially you use the following command:

python setup.py register

At that point you’ll get a menu that lets you log in or register as a new user. Once your package is
registered, you can use the upload command to upload it to PyPI. For example,

python setup.py sdist upload

will upload a source distribution.

http://dx.doi.org/10.1007/978-1-4842-0028-5_12
http://www.py2exe.org/
http://pythonhosted.org/py2app

Chapter 18 ■ Packaging Your Programs

342

A Quick Summary
Finally, you now know how to create shiny, professional-looking software with fancy GUI installers—or
how to automate the generation of those precious .tar.gz files. Here is a summary of the specific concepts
covered:

Setuptools: The Setuptools toolkit lets you write installer scripts, conventionally
called setup.py. With these scripts, you can install modules, packages, and
extensions.

Setuptools commands: You can run your setup.py script with several
commands, such as build, build_ext, install, sdist, and bdist.

Compiling extensions: You can use Setuptools to have your C extensions
compiled automatically, with Setuptools automatically locating your Python
installation and figuring out which compiler to use. You can even have it run
SWIG automatically.

Executable binaries: The py2exe extension to Setuptools can be used to create
executable Windows binaries from your Python programs. Along with a couple
of extra files (which can be conveniently installed with an installer), these .exe
files can be run without installing a Python interpreter separately. The py2app
extension provides similar functionality for macOS.

New Functions in This Chapter

Function Description

setuptools.setup(...) Configures Setuptools with keyword arguments in your setup.py script

What Now?
That’s it for the technical stuff—sort of. In the next chapter, you get some programming methodology and
philosophy and then come the projects. Enjoy!

343© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_19

CHAPTER 19

Playful Programming

At this point, you should have a clearer picture of how Python works than when you started. Now the rubber
hits the road, so to speak, and in the next ten chapters you put your newfound skills to work. Each chapter
contains a single do-it-yourself project with a lot of room for experimentation, while at the same time giving
you the necessary tools to implement a solution.

In this chapter, I give you some general guidelines for programming in Python.

Why Playful?
I think one of the strengths of Python is that it makes programming fun—for me, anyway. It’s much easier to
be productive when you’re having fun; and one of the fun things about Python is that it allows you to be very
productive. It’s a positive feedback loop, and you get far too few of those in life.

The expression Playful Programming is one I invented as a less extreme version of Extreme
Programming, or XP.1 I like many of the ideas of the XP movement but have been too lazy to commit
completely to their principles. Instead, I’ve picked up a few things and combined them with what I feel is a
natural way of developing programs in Python.

The Jujitsu of Programming
You have perhaps heard of jujitsu? It’s a Japanese martial art, which, like its descendants judo and aikido,2
focuses on flexibility of response, or “bending instead of breaking.” Rather than trying to impose your
preplanned moves on an opponent, you go with the flow, using your opponent’s movements against him.
This way (in theory), you can beat an opponent who is bigger, meaner, and stronger than you.

How does this apply to programming? The key is the syllable “ju,” which may be (very roughly)
translated as flexibility. When you run into trouble while programming (as you invariably will), instead
of trying to cling stiffly to your initial designs and ideas, be flexible. Roll with the punches. Be prepared to
change and adapt. Don’t treat unforeseen events as frustrating interruptions; treat them as stimulating
starting points for creative exploration of new options and possibilities.

The point is that when you sit down and plan how your program should be, you don’t have any real
experience with that specific program. How could you? After all, it doesn’t exist yet. By working on the
implementation, you gradually learn new things that could have been useful when you did the original

1Extreme Programming is an approach to software development that, arguably, has been in use by programmers for years, but
that was first named and documented by Kent Beck. For more information, see http://www.extremeprogramming.org.
2Or, for that matter, its Chinese relatives, such as taijiquan or baguazhang.

http://www.extremeprogramming.org/

Chapter 19 ■ Playful Programming

344

design. Instead of ignoring these lessons you pick up along the way, you should use them to redesign (or
refactor) your software. I’m not saying that you should just start hacking away with no idea of where you are
headed but that you should prepare for change and accept that your initial design will need to be revised. It’s
like the old writer’s saying: “Writing is rewriting.”

This practice of flexibility has many aspects; here I’ll touch upon two of them:

Prototyping: One of the nice things about Python is that you can write programs
quickly. Writing a prototype program is an excellent way to learn more about
your problem.

Configuration: Flexibility comes in many forms. The purpose of configuration
is to make it easy to change certain parts of your program, both for you and your
users.

A third aspect, automated testing, is absolutely essential if you want to be able to change your program
easily. With tests in place, you can be sure that your program still works after introducing a modification.
Prototyping and configuration are discussed in the following sections. For information about testing, see
Chapter 16.

Prototyping
In general, if you wonder how something works in Python, just try it. You don’t need to do extensive
preprocessing, such as compiling or linking, which is necessary in many other languages. You can just run
your code directly. And not only that, you can run it piecemeal in the interactive interpreter, prodding at
every corner until you thoroughly understand its behavior.

This kind of exploration doesn’t cover only language features and built-in functions. Sure, it’s useful to
be able to find out exactly how, say, the iter function works, but even more important is the ability to easily
create a prototype of the program you are about to write, just to see how that works.

■■ Note  In this context, the word prototype means a tentative implementation, a mock-up that implements
the main functionality of the final program but that may need to be completely rewritten at some later stage—
or not. Quite often, what started out as a prototype can be turned into a working program.

After you have put some thought into the structure of your program (such as which classes and
functions you need), I suggest implementing a simple version of it, possibly with very limited functionality.
You’ll quickly notice how much easier the process becomes when you have a running program to play with.
You can add features, change things you don’t like, and so on. You can really see how it works, instead of just
thinking about it or drawing diagrams on paper.

You can use prototyping in any programming language, but the strength of Python is that writing a
mock-up is a very small investment, so you’re not committed to using it. If you find that your design wasn’t
as clever as it could have been, you can simply toss out your prototype and start from scratch. The process
might take a few hours or a day or two. If you were programming in C++, for example, much more work
would probably be involved in getting something up and running, and discarding it would be a major
decision. By committing to one version, you lose flexibility; you get locked in by early decisions that may
prove wrong in light of the real-world experience you get from actually implementing it.

In the projects that follow this chapter, I consistently use prototyping instead of detailed analysis and
design up front. Every project is divided into two implementations. The first is a fumbling experiment in
which I’ve thrown together a program that solves the problem (or possibly only a part of the problem) in
order to learn about the components needed and what’s required of a good solution. The greatest lesson will
probably be seeing all the flaws of the program in action. By building on this newfound knowledge, I take

http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 19 ■ Playful Programming

345

another, hopefully more informed, whack at it. Of course, you should feel free to revise the code, or even
start afresh a third time. Usually, starting from scratch doesn’t take as much time as you might think. If you
have already thought through the practicalities of the program, the typing shouldn’t take too long.

THE CASE AGAINST REWRITING

Although I’m advocating the use of prototypes here, there is reason to be a bit cautious about restarting
your project from scratch at any point, especially if you’ve invested some time and effort into the
prototype. It is probably better to refactor and modify that prototype into a more functional system, for
several reasons.

One common problem that can occur is “second system syndrome.” This is the tendency to try to make
the second version so clever or perfect that it’s never finished.

The “continual rewriting syndrome,” quite prevalent in fiction writing, is the tendency to keep fiddling
with your program, perhaps starting from scratch again and again. At some point, leaving well enough
alone may be the best strategy—just get something that works.

Then there is “code fatigue.” You grow tired of your code. It seems ugly and clunky to you after you’ve
worked with it for a long time. Sadly, one of the reasons it may seem hacky and clunky is that it has grown
to accommodate a range of special cases and to incorporate several forms of error handling and the like.
These are features you would need to reintroduce in a new version anyway, and they have probably cost
you quite a bit of effort (not the least in the form of debugging) to implement in the first place.

In other words, if you think your prototype could be turned into a workable system, by all means,
keep hacking at it, rather than restarting. In the project chapters that follow, I have separated the
development cleanly into two versions: the prototype and the final program. This is partly for clarity
and partly to highlight the experience and insight one can get by writing the first version of a piece of
software. In the real world, I might very well have started with the prototype and “refactored myself” in
the direction of the final system.

For more on the horrors of restarting from scratch, take a look at Joel Spolsky’s article “Things You Should
Never Do, Part I” (found on his web site, http://joelonsoftware.com). According to Spolsky, rewriting
the code from scratch is the single worst strategic mistake that any software company can make.

Configuration
In this section, I return to the ever important principle of abstraction. In Chapters 6 and 7, I showed you how
to abstract away code by putting it in functions and methods and hiding larger structures inside classes. Let’s
take a look at another, much simpler, way of introducing abstraction in your program: extracting symbolic
constants from your code.

Extracting Constants
By constants, I mean built-in literal values such as numbers, strings, and lists. Instead of writing these
repeatedly in your program, you can gather them in global variables. I know I’ve been warning you about
those, but problems with global variables occur primarily when you start changing them, because it can be
difficult to keep track of which part of your code is responsible for which change. I’ll leave these variables

http://joelonsoftware.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_6
http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 19 ■ Playful Programming

346

alone, however, and use them as if they were constant (hence the term symbolic constants). To signal that a
variable is to be treated as a symbolic constant, you can use a special naming convention, using only capital
letters in their variable names and separating words with underscores.

Let’s take a look at an example. In a program that calculates the area and circumference of circles, you
could keep writing 3.14 every time you needed the value π. But what if you, at some later time, wanted a
more exact value, say 3.14159? You would need to search through the code and replace the old value with
the new. This isn’t very hard, and in most good text editors, it could be done automatically. However, what if
you had started out with the value 3? Would you later want to replace every occurrence of the number 3 with
3.14159? Hardly. A much better way of handling this would be to start the program with the line PI = 3.14,
and then use the name PI instead of the number itself. That way, you could simply change this single line
to get a more exact value at some later time. Just keep this in the back of your mind: whenever you write a
constant (such as the number 42 or the string “Hello, world!”) more than once, consider placing it in a global
variable instead.

■■ Note  Actually, the value of π is found in the math module, under the name math.pi:

>>> from math import pi

>>> pi

3.1415926535897931

This may seem agonizingly obvious to you. But the real point of all this comes in the next section, where I
talk about configuration files.

Configuration Files
Extracting constants for your own benefit is one thing, but some constants can even be exposed to your
users. For example, if they don’t like the background color of your GUI program, perhaps you should let
them use another color. Or perhaps you could let users decide what greeting message they would like to
get when they start your exciting arcade game or the default starting page of the new web browser you just
implemented.

Instead of putting these configuration variables at the top of one of your modules, you can put them in a
separate file. The simplest way of doing this is to have a separate module for configuration. For example, if PI
is set in the module file config.py, you can (in your main program) do the following:

from config import PI

Then, if the user wants a different value for PI, she can simply edit config.py without having to wade
through your code.

■■ Caution  There is a trade-off with the use of configuration files. On the one hand, configuration is useful,
but using a central, shared repository of variables for an entire project can make it less modular and more
monolithic. Make sure you’re not breaking abstractions (such as encapsulation).

Chapter 19 ■ Playful Programming

347

Another possibility is to use the standard library module configparser, which will allow you to use a
reasonably standard format for configuration files. It allows both standard Python assignment syntax, such
as this:

greeting = 'Hello, world!'

(although this would give you two extraneous quotes in your string) and another configuration format used
in many programs:

greeting: Hello, world!

You must divide the configuration file into sections, using headers such as [files] or [colors]. The names
can be anything, but you need to enclose them in brackets. A sample configuration file is shown in Listing 19-1,
and a program using it is shown in Listing 19-2. For more information about the features of the configparser
module, consult the library documentation.

Listing 19-1.  A Simple Configuration File

[numbers]

pi: 3.1415926535897931

[messages]

greeting: Welcome to the area calculation program!
question: Please enter the radius:
result_message: The area is

Listing 19-2.  A Program Using ConfigParser

from configparser import ConfigParser

CONFIGFILE = "area.ini"

config = ConfigParser()
Read the configuration file:
config.read(CONFIGFILE)

Print out an initial greeting;
'messages' is the section to look in:
print(config['messages'].get('greeting'))

Read in the radius, using a question from the config file:
radius = float(input(config['messages'].get('question') + ' '))

Print a result message from the config file;
end with a space to stay on same line:
print(config['messages'].get('result_message'), end=' ')

getfloat() converts the config value to a float:
print(config['numbers'].getfloat('pi') * radius**2)

Chapter 19 ■ Playful Programming

348

I won’t go into much detail about configuration in the following projects, but I suggest you think about
making your programs configurable. That way, users can adapt the program to their tastes, which can make
using it more pleasurable. After all, one of the main frustrations of using software is that you can’t make it
behave the way you want it to.

LEVELS OF CONFIGURATION

Configurability is an integral part of the UNIX tradition of programming. In Chapter 10 of his excellent
book The Art of UNIX Programming (Addison-Wesley, 2003), Eric S. Raymond describes the following
three sources of configuration or control information, which (if included) should probably be consulted in
this order 3 so the later sources override the earlier ones:

•	 Configuration files: See the “Configuration Files” section in this chapter.

•	 Environment variables: These can be fetched using the dictionary os.environ.

•	 Switches and arguments passed to the program on the command line: For
handling command-line arguments, you can use sys.argv directly. If you want to deal
with switches (options), you should check out the argparse module, as mentioned in
Chapter 10.

Logging
Somewhat related to testing (discussed in Chapter 16) and quite useful when furiously reworking the innards
of a program, logging can certainly help you discover problems and bugs. Logging is basically collecting data
about your program as it runs, so you can examine it afterward (or as the data accumulates, for that matter).
A very simple form of logging can be done with the print statement. Just put a statement like this at the
beginning of your program:

log = open('logfile.txt', 'w')

You can then later put any interesting information about the state of your program into this file, as follows:

print('Downloading file from URL', url, file=log)
text = urllib.urlopen(url).read()
print'File successfully downloaded', file=log)

This approach won’t work well if your program crashes during the download. It would be safer if you opened
and closed your file for every log statement (or, at least, flushed the file after writing). Then, if your program
crashed, you could see that the last line in your log file said “Downloading file from URL” and you would
know that the download wasn’t successful.

The way to go, actually, is using the logging module in the standard library. Basic usage is pretty
straightforward, as demonstrated by the program in Listing 19-3.

3Actually, global configuration files and system-set environment variables come before these. See the book for more
details.

http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://dx.doi.org/10.1007/978-1-4842-0028-5_10
http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 19 ■ Playful Programming

349

Listing 19-3.  A Program Using the logging Module

import logging

logging.basicConfig(level=logging.INFO, filename='mylog.log')

logging.info('Starting program')

logging.info('Trying to divide 1 by 0')

print(1 / 0)

logging.info('The division succeeded')

logging.info('Ending program')

Running that program would result in the following log file (called mylog.log):

INFO:root:Starting program
INFO:root:Trying to divide 1 by 0

As you can see, nothing is logged after trying to divide 1 by 0, as this error effectively kills the program.
Because this is such a simple error, you can tell what is wrong by the exception traceback that prints as the
program crashes. The most difficult type of bug to track down is one that doesn’t stop your program but
simply makes it behave strangely. Examining a detailed log file may help you find out what’s going on.

The log file in this example isn’t very detailed, but by configuring the logging module properly, you can
set up just how you want your logging to work. Here are a few examples:

•	 Log entries of different types (information, debug info, warnings, custom types, and
so on). By default, only warnings are let through (which is why I explicitly set the
level to logging.INFO in Listing 19-3).

•	 Log just items that relate to certain parts of your program.

•	 Log information about time, date, and so forth.

•	 Log to different locations, such as sockets.

•	 Configure the logger to filter out some or most of the logging, so you get only what
you need at any one time, without rewriting the program.

The logging module is quite sophisticated, and there is much to be learned in the documentation.

If You Can’t Be Bothered
“All this is well and good,” you may think, “but there’s no way I’m going to put that much effort into writing a
simple little program. Configuration, testing, logging—it sounds really boring.”

Well, that’s fine. You may not need it for simple programs. And even if you’re working on a larger
project, you may not really need all of this at the beginning. I would say that the minimum is that you have
some way of testing your program (as discussed in Chapter 16), even if it’s not based on automatic unit tests.
For example, if you’re writing a program that automatically makes you coffee, you should have a coffee pot
around, to see if it works.

http://dx.doi.org/10.1007/978-1-4842-0028-5_16

Chapter 19 ■ Playful Programming

350

In the project chapters that follow, I don’t write full test suites, intricate logging facilities, and so forth.
I present you with some simple test cases to demonstrate that the programs work, and that’s it. If you find
the core idea of a project interesting, you should take it further—try to enhance and expand it. And in the
process, you should consider the issues you read about in this chapter. Perhaps a configuration mechanism
would be a good idea? Or a more extensive test suite? It’s up to you.

If You Want to Learn More
Just in case you want more information about the art, craft, and philosophy of programming, here are some
books that discuss these things more in depth:

•	 The Pragmatic Programmer, by Andrew Hunt and David Thomas
(Addison-Wesley, 1999)

•	 Refactoring, by Kent Beck et al. (Addison-Wesley, 1999)

•	 Design Patterns, by the “Gang of Four,” Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides (Addison-Wesley, 1994)

•	 Test-Driven Development: By Example, by Kent Beck (Addison-Wesley, 2002)

•	 The Art of UNIX Programming, by Eric S. Raymond (Addison-Wesley, 2003)4

•	 Introduction to Algorithms, Second Edition, by Thomas H. Cormen et al.
(MIT Press, 2001)

•	 The Art of Computer Programming, Volumes 1–3, by Donald Knuth
(Addison-Wesley, 1998)

•	 Concepts, Techniques, and Models of Computer Programming, by Peter Van Roy and
Seif Haridi (MIT Press, 2004)

Even if you don’t read every page of every book (I know I haven’t), just browsing through a few of these can
give you quite a lot of insight.

A Quick Summary
In this chapter, I described some general principles and techniques for programming in Python,
conveniently lumped under the heading “Playful Programming.” Here are the highlights:

Flexibility: When designing and programming, you should aim for flexibility.
Instead of clinging to your initial ideas, you should be willing to—and even
prepared to—revise and change every aspect of your program as you gain insight
into the problem at hand.

Prototyping: One important technique for learning about a problem and
possible implementations is to write a simple version of your program to see how
it works. In Python, this is so easy that you can write several prototypes in the
time it takes to write a single version in many other languages. Still, you should
be wary of rewriting your code from scratch if you don’t have to—refactoring is
usually a better solution.

4Also available online at Raymond’s web site.

Chapter 19 ■ Playful Programming

351

Configuration: Extracting constants from your program makes it easier to
change them at some later point. Putting them in a configuration file makes it
possible for your users to configure the program to behave as they would like.
Employing environment variables and command-line options can make your
program even more configurable.

Logging: Logging can be quite useful for uncovering problems with your
program—or just to monitor its ordinary behavior. You can implement simple
logging yourself, using the print statement, but the safest bet is to use the
logging module from the standard library.

What Now?
Indeed, what now? Now is the time to take the plunge and really start programming. It’s time for the projects.
All ten project chapters have a similar structure, with the following sections:

“What’s the Problem?”: In this section, the main goals of the project are
outlined, including some background information.

“Useful Tools”: Here, I describe modules, classes, functions, and so on, that
might be useful for the project.

“Preparations”: This section covers any preparations necessary before starting
to program. This may include setting up the necessary framework for testing the
implementation.

“First Implementation”: This is the first whack—a tentative implementation to
learn more about the problem.

“Second Implementation”: After the first implementation, you will probably
have a better understanding of things, which will enable you to create a new and
improved version.

“Further Exploration”: Finally, I give pointers for further experimentation and
exploration. Let’s get started with the first project, which is to create a program
that automatically marks up files with HTML.

353© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_20

CHAPTER 20

Project 1: Instant Markup

In this project, you see how to use Python’s excellent text-processing capabilities, including the capability to
use regular expressions to change a plain-text file into one marked up in a language such as HTML or XML.
You need such skills if you want to use text written by people who don’t know these languages in a system
that requires the contents to be marked up.

Don’t speak fluent XML? Don’t worry about that—if you have only a passing acquaintance with HTML,
you’ll do fine in this chapter. If you need an introduction to HTML, you should find tons of tutorials online.
For an example of XML use, see Chapter 22.

Let’s start by implementing a simple prototype that does the basic processing and then extend that
program to make the markup system more flexible.

What’s the Problem?
You want to add some formatting to a plain-text file. Let’s say you’ve been handed the file from someone
who can’t be bothered with writing in HTML, and you need to use the document as a web page. Instead of
adding all the necessary tags manually, you want your program to do it automatically.

■■ Note  In recent years, this sort of “plain-text markup” has, in fact, become quite common, probably
mainly because of the explosion of wiki and blog software with plain-text interfaces. See the section “Further
Exploration” at the end of this chapter for more information.

Your task is basically to classify various text elements, such as headlines and emphasized text, and
then clearly mark them. In the specific problem addressed here, you add HTML markup to the text, so the
resulting document can be displayed in a web browser and used as a web page. However, once you have
built your basic engine, there is no reason why you can’t add other kinds of markup (such as various forms
of XML or perhaps LATEX codes). After analyzing a text file, you can even perform other tasks, such as
extracting all the headlines to make a table of contents.

■■ Note  LATEX is another markup system (based on the TEX typesetting program) for creating various types of
technical documents. I mention it here only as an example of other uses for your program. If you want to know
more, you can visit the TEX Users Group web site at http://www.tug.org.

http://dx.doi.org/10.1007/978-1-4842-0028-5_22
http://www.tug.org/

Chapter 20 ■ Project 1: Instant Markup

354

The text you’re given may contain some clues (such as emphasized text being marked *like this*), but
you’ll probably need some ingenuity in making your program guess how the document is structured.

Before starting to write your prototype, let’s define some goals.

•	 The input shouldn’t be required to contain artificial codes or tags.

•	 You should be able to deal with both different blocks, such as headings, paragraphs,
and list items, and in-line text, such as emphasized text or URLs.

•	 Although this implementation deals with HTML, it should be easy to extend it to
other markup languages.

You may not be able to reach these goals fully in the first version of your program, but that’s the point of the
prototype. You write the prototype to find flaws in your original ideas and to learn more about how to write a
program that solves your problem.

■■ Tip  If you can, it’s probably a good idea to modify your original program incrementally rather than beginning
from scratch. In the interest of clarity, I give you two completely separate versions of the program here.

Useful Tools
Consider what tools might be needed in writing this program.

•	 You certainly need to read from and write to files (see Chapter 11), or at least read
from standard input (sys.stdin) and output with print.

•	 You probably need to iterate over the lines of the input (see Chapter 11).

•	 You need a few string methods (see Chapter 3).

•	 Perhaps you’ll use a generator or two (see Chapter 9).

•	 You probably need the re module (see Chapter 10).

If any of these concepts seem unfamiliar to you, you should perhaps take a moment to refresh your memory.

Preparations
Before you start coding, you need some way of assessing your progress; you need a test suite. In this project,
a single test may suffice: a test document (in plain text). Listing 20-1 contains sample text that you want to
mark up automatically.

Listing 20-1.  A Sample Plain-Text Document (test_input.txt)

Welcome to World Wide Spam, Inc.

These are the corporate web pages of *World Wide Spam*, Inc. We hope
you find your stay enjoyable, and that you will sample many of our
products.

http://dx.doi.org/10.1007/978-1-4842-0028-5_11
http://dx.doi.org/10.1007/978-1-4842-0028-5_11
http://dx.doi.org/10.1007/978-1-4842-0028-5_3
http://dx.doi.org/10.1007/978-1-4842-0028-5_9
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 20 ■ Project 1: Instant Markup

355

A short history of the company

World Wide Spam was started in the summer of 2000. The business
concept was to ride the dot-com wave and to make money both through
bulk email and by selling canned meat online.

After receiving several complaints from customers who weren't
satisfied by their bulk email, World Wide Spam altered their profile,
and focused 100% on canned goods. Today, they rank as the world's
13,892nd online supplier of SPAM.

Destinations

From this page you may visit several of our interesting web pages:

 - What is SPAM? (http://wwspam.fu/whatisspam)

 - How do they make it? (http://wwspam.fu/howtomakeit)

 - Why should I eat it? (http://wwspam.fu/whyeatit)

How to get in touch with us

You can get in touch with us in *many* ways: By phone (555-1234), by
email (wwspam@wwspam.fu) or by visiting our customer feedback page
(http://wwspam.fu/feedback).

To test your implementation, just use this document as input and view the results in a web browser, or
perhaps examine the added tags directly.

■■ Note  It is usually better to have an automated test suite than to check your test results manually. (Do you
see any way of automating this test?)

First Implementation
One of the first things you need to do is split the text into paragraphs. It’s obvious from Listing 20-1 that the
paragraphs are separated by one or more empty lines. A better word than paragraph might be block because
this name can apply to headlines and list items as well.

Finding Blocks of Text
A simple way to find these blocks is to collect all the lines you encounter until you find an empty line and
then return the lines you have collected so far. That would be one block. Then, you could start all over
again. You don’t need to bother collecting empty lines, and you won’t return empty blocks (where you have
encountered more than one empty line). Also, you should make sure that the last line of the file is empty;
otherwise, you won’t know when the last block is finished. (There are other ways of finding out, of course.)

Chapter 20 ■ Project 1: Instant Markup

356

Listing 20-2 shows an implementation of this approach.

Listing 20-2.  A Text Block Generator (util.py)

def lines(file):
 for line in file: yield line
 yield '\n'

def blocks(file):
 block = []
 for line in lines(file):
 if line.strip():
 block.append(line)
 elif block:
 yield ''.join(block).strip()
 block = []

The lines generator is just a little utility that tacks an empty line onto the end of the file. The blocks
generator implements the approach described. When a block is yielded, its lines are joined, and the resulting
string is stripped, giving you a single string representing the block, with excessive whitespace at either end
(such as list indentations or newlines) removed. (If you don’t like this way of finding paragraphs, I’m sure
you can figure out several other approaches. It might even be fun to see how many you can invent.) I’ve put
the code in the file util.py, which means that you can import the utility generators in your program later.

Adding Some Markup
With the basic functionality from Listing 20-2, you can create a simple markup script. The basic steps of this
program are as follows:

	 1.	 Print some beginning markup.

	 2.	 For each block, print the block enclosed in paragraph tags.

	 3.	 Print some ending markup.

This isn’t very difficult, but it’s not extremely useful either. Let’s say that instead of enclosing the first block in
paragraph tags, you enclose it in top heading tags (h1). Also, you replace any text enclosed in asterisks with
emphasized text (using em tags). At least that’s a bit more useful. Given the blocks function and using re.
sub, the code is very simple. See Listing 20-3.

Listing 20-3.  A Simple Markup Program (simple_markup.py)

import sys, re
from util import *

print('<html><head><title>...</title><body>')

title = True
for block in blocks(sys.stdin):
 block = re.sub(r'*(.+?)*', r'\1', block)
 if title:
 print('<h1>')
 print(block)

Chapter 20 ■ Project 1: Instant Markup

357

 print('</h1>')
 title = False
 else:
 print('<p>')
 print(block)
 print('</p>')

print('</body></html>')

This program can be executed on the sample input as follows:

$ python simple_markup.py < test_input.txt > test_output.html

The file test_output.html will then contain the generated HTML code. Figure 20-1 shows how this HTML
code looks in a web browser.

Although not very impressive, this prototype does perform some important tasks. It divides the text into
blocks that can be handled separately, and it applies a filter (consisting of a call to re.sub) to each block in
turn. This seems like a good approach to use in your final program.

Now what would happen if you tried to extend this prototype? You would probably add checks inside
the for loop to see whether the block was a heading, a list item, or something else. You would add more
regular expressions. It could quickly grow into a mess. Even more important, it would be very difficult to
make it output anything other than HTML; and one of the goals of this project is to make it easy to add other
output formats. Let’s assume you want to refactor your program and structure it a bit differently.

Figure 20-1.  The first attempt at generating a web page

Chapter 20 ■ Project 1: Instant Markup

358

Second Implementation
So, what did you learn from this first implementation? To make it more extensible, you need to make your
program more modular (divide the functionality into independent components). One way of achieving
modularity is through object-oriented design (see Chapter 7). You need to find some abstractions to make
your program more manageable as its complexity grows. Let’s begin by listing some possible components.

•	 A parser: Add an object that reads the text and manages the other classes.

•	 Rules: You can make one rule for each type of block. The rule should be able to
detect the applicable block type and to format it appropriately.

•	 Filters: Use filters to wrap up some regular expressions to deal with in-line elements.

•	 Handlers: The parser uses handlers to generate output. Each handler can produce a
different kind of markup.

Although this isn’t a very detailed design, at least it gives you some ideas about how to divide your code into
smaller parts and make each part manageable.

Handlers
Let’s begin with the handlers. A handler is responsible for generating the resulting marked-up text, but it
receives detailed instructions from the parser. Let’s say it has a pair of methods for each block type: one for
starting the block and one for ending it. For example, it might have the methods start_paragraph and
end_paragraph to deal with paragraph blocks. For HTML, these could be implemented as follows:

class HTMLRenderer:
 def start_paragraph(self):
 print('<p>')
 def end_paragraph(self):
 print('</p>')

Of course, you’ll need similar methods for other block types. (For the full code of the HTMLRenderer class, see
Listing 20-4 later in this chapter.) This seems flexible enough. If you wanted some other type of markup, you
would just make another handler (or renderer) with other implementations of the start and end methods.

■■ Note  The term handler (as opposed to renderer, for example) was chosen to indicate that it handles the
method calls generated by the parser (see also the following section, “A Handler Superclass”). It doesn’t have to
render the text in some markup language, as HTMLRenderer does. A similar handler mechanism is used in the
XML parsing scheme called SAX, which is explained in Chapter 22.

How do you deal with regular expressions? As you may recall, the re.sub function can take a function as
its second argument (the replacement). This function is called with the match object, and its return value
is inserted into the text. This fits nicely with the handler philosophy discussed previously—you just let the
handlers implement the replacement methods. For example, emphasis can be handled like this:

def sub_emphasis(self, match):
 return '{}'.format(match.group(1))

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_22

Chapter 20 ■ Project 1: Instant Markup

359

If you don’t understand what the group method does, perhaps you should take another look at the re
module, described in Chapter 10.

In addition to the start, end, and sub methods, we’ll have a method called feed, which we use to feed
actual text to the handler. In your simple HTML renderer, let’s just implement it like this:

def feed(self, data):
 print(data)

A Handler Superclass
In the interest of flexibility, let’s add a Handler class, which will be the superclass of your handlers and
will take care of some administrative details. Instead of needing to call the methods by their full name
(for example, start_paragraph), it may at times be useful to handle the block types as strings (for example,
'paragraph') and supply the handler with those. You can do this by adding some generic methods called
start(type), end(type), and sub(type). In addition, you can make start, end, and sub check whether the
corresponding methods (such as start_paragraph for start('paragraph')) are really implemented and
do nothing if no such method is found. An implementation of this Handler class follows. (This code is taken
from the module handlers shown later, in Listing 20-4.)

class Handler:
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix + name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 def substitution(match):
 result = self.callback('sub_', name, match)
 if result is None: match.group(0)
 return result
 return substitution

Several things in this code warrant some explanation.

•	 The callback method is responsible for finding the correct method (such as
start_paragraph), given a prefix (such as 'start_') and a name (such as 'paragraph').
It performs its task by using getattr with None as the default value. If the object returned
from getattr is callable, it is called with any additional arguments supplied. So, for
example, calling handler.callback('start_', 'paragraph') calls the method
handler.start_paragraph with no arguments, given that it exists.

•	 The start and end methods are just helper methods that call callback with the
respective prefixes start_ and end_.

•	 The sub method is a bit different. It doesn’t call callback directly but returns a new
function, which is used as the replacement function in re.sub (which is why it takes
a match object as its only argument).

http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 20 ■ Project 1: Instant Markup

360

Let’s consider an example. Say HTMLRenderer is a subclass of Handler and it implements the method sub_
emphasis as described in the previous section (see Listing 20-4 for the actual code of handlers.py). Let’s say
you have an HTMLRenderer instance in the variable handler.

>>> from handlers import HTMLRenderer
>>> handler = HTMLRenderer()

What then will handler.sub('emphasis') do?

>>> handler.sub('emphasis')
<function substitution at 0x168cf8>

It returns a function (substitution) that basically calls the handler.sub_emphasis method when you call it.
That means that you can use this function in a re.sub statement:

>>> import re
>>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This is a test'

Magic! (The regular expression matches occurrences of text bracketed by asterisks, which I’ll discuss
shortly.) But why go to such lengths? Why not just use r'\1', as in the simple version? Because
then you would be committed to using the em tag, but you want the handler to be able to decide which
markup to use. If your handler were a (hypothetical) LaTeXRenderer, for example, you might get another
result altogether.

>> re.sub(r'*(.+?)*', handler.sub('emphasis'), 'This *is* a test')
'This \\emph{is} a test'

The markup has changed, but the code has not.
We also have a backup, in case no substitution is implemented. The callback method tries to find a
suitable sub_something method, but if it doesn’t find one, it returns None. Because your function is a re.sub
replacement function, you don’t want it to return None. Instead, if you do not find a substitution method,
you just return the original match without any modifications. If the callback returns None, substitution
(inside sub) returns the original matched text (match.group(0)) instead.

Rules
Now that you’ve made the handlers quite extensible and flexible, it’s time to turn to the parsing
(interpretation of the original text). Instead of making one big if statement with various conditions and
actions, such as in the simple markup program, let’s make the rules a separate kind of object.

The rules are used by the main program (the parser), which must determine which rules are applicable
for a given block, and then make each rule do what is needed to transform the block. In other words, a rule
must be able to do the following:

•	 Recognize blocks where it applies (the condition).

•	 Transform blocks (the action).

So each rule object must have two methods: condition and action.
The condition method needs only one argument: the block in question. It should return a Boolean

value indicating whether the rule is applicable to the given block.

Chapter 20 ■ Project 1: Instant Markup

361

■■ Tip  For complex rule parsing, you might want to give the rule object access to some state variables as well,
so it knows more about what has happened so far or which other rules have or have not been applied.

The action method also needs the block as an argument, but to be able to affect the output, it must also
have access to the handler object.

In many circumstances, only one rule may be applicable; that is, if you find that a headline rule is
used (indicating that the block is a headline), you should not attempt to use the paragraph rule. A simple
implementation of this would be to have the parser try the rules one by one and stop the processing of the
block once one of the rules is triggered. This would be fine in general, but as you’ll see, sometimes a rule
may not preclude the execution of other rules. Therefore, we add another piece of functionality to our action
method: it returns a Boolean value indicating whether the rule processing for the current block should stop.
(You could also use an exception for this, similarly to the StopIteration mechanism of iterators.)

Pseudocode for the headline rule might be as follows:

class HeadlineRule:
 def condition(self, block):
 if the block fits the definition of a headline, return True;
 otherwise, return False.
 def action(self, block, handler):
 call methods such as handler.start('headline'), handler.feed(block) and
 handler.end('headline').
 because we don't want to attempt to use any other rules,
 return True, which will end the rule processing for this block.

A Rule Superclass
Although you don’t strictly need a common superclass for your rules, several of them may share the same
general action—calling the start, feed, and end methods of the handler with the appropriate type string
argument and then returning True (to stop the rule processing). Assuming that all the subclasses have an
attribute called type containing this type name as a string, you can implement your superclass as shown
in the code that follows. (The Rule class is found in the rules module; the full code is shown later in
Listing 20-5.)

class Rule:
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

The condition method is the responsibility of each subclass. The Rule class and its subclasses are put in the
rules module.

Filters
You won’t need a separate class for your filters. Given the sub method of your Handler class, each filter can
be represented by a regular expression and a name (such as emphasis or url). You’ll see how in the next
section, when I show you how to deal with the parser.

Chapter 20 ■ Project 1: Instant Markup

362

The Parser
We’ve come to the heart of the application: the Parser class. It uses a handler and a set of rules and filters to
transform a plain-text file into a marked-up file—in this specific case, an HTML file. Which methods does it
need? It needs a constructor to set things up, a method to add rules, a method to add filters, and a method to
parse a given file.

The following is the code for the Parser class (from Listing 20-6, later in this chapter, which details
markup.py):

class Parser:
 """
 A Parser reads a text file, applying rules and controlling a
 handler.
 """
 def __init__ (self, handler):
 self.handler = handler
 self.rules = []
 self.filters = []
 def addRule(self, rule):
 self.rules.append(rule)
 def addFilter(self, pattern, name):
 def filter(block, handler):
 return re.sub(pattern, handler.sub(name), block)
 self.filters.append(filter)
 def parse(self, file):
 self.handler.start('document')
 for block in blocks(file):
 for filter in self.filters:
 block = filter(block, self.handler)
 for rule in self.rules:
 if rule.condition(block):
 last = rule.action(block, self.handler)
 if last: break
 self.handler.end('document')

Although there is quite a lot to digest in this class, most of it isn’t very complicated. The constructor simply
assigns the supplied handler to an instance variable (attribute) and then initializes two lists: one of rules
and one of filters. The addRule method adds a rule to the rule list. The addFilter method, however, does
a bit more work. Like addRule, it adds a filter to the filter list, but before doing so, it creates that filter. The
filter is simply a function that applies re.sub with the appropriate regular expression (pattern) and uses a
replacement from the handler, accessed with handler.sub(name).

The parse method, although it might look a bit complicated, is perhaps the easiest method to
implement because it merely does what you’ve been planning to do all along. It begins by calling
start('document') on the handler and ends by calling end('document'). Between these calls, it iterates
over all the blocks in the text file. For each block, it applies both the filters and the rules. Applying a filter is
simply a matter of calling the filter function with the block and handler as arguments and rebinding the
block variable to the result, as follows:

block = filter(block, self.handler)

This enables each of the filters to do its work, which is replacing parts of the text with marked-up text (such
as replacing *this* with this).

Chapter 20 ■ Project 1: Instant Markup

363

There is a bit more logic in the rule loop. For each rule, there is an if statement, checking whether the
rule applies by calling rule.condition(block). If the rule applies, rule.action is called with the block and
handler as arguments. Remember that the action method returns a Boolean value indicating whether to
finish the rule application for this block. Finishing the rule application is done by setting the variable last to
the return value of action and then conditionally breaking out of the for loop.

if last: break

■■ Note  You can collapse these two statements into one, eliminating the last variable.

if rule.action(block, self.handler): break

Whether or not to do so is largely a matter of taste. Removing the temporary variable makes the code simpler,
but leaving it in clearly labels the return value.

Constructing the Rules and Filters
Now you have all the tools you need, but you haven’t created any specific rules or filters yet. The motivation
behind much of the code you’ve written so far is to make the rules and filters as flexible as the handlers.
You can write several independent rules and filters and add them to your parser through the addRule and
addFilter methods, making sure to implement the appropriate methods in your handlers.

A complicated rule set makes it possible to deal with complicated documents. However, let’s keep it
simple for now. Let’s create one rule for the title, one rule for other headings, and one for list items. Because
list items should be treated collectively as a list, you’ll create a separate list rule, which deals with the entire list.
Lastly, you can create a default rule for paragraphs, which covers all blocks not dealt with by the previous rules.

We can specify the rules in informal terms as follows:

•	 A heading is a block that consists of only one line, which has a length of at most 70
characters. If the block ends with a colon, it is not a heading.

•	 The title is the first block in the document, provided that it is a heading.

•	 A list item is a block that begins with a hyphen (-).

•	 A list begins between a block that is not a list item and a following list item and ends
between a list item and a following block that is not a list item.

These rules follow some of my intuitions about how a text document is structured. Your opinions on this (and
your text documents) may differ. Also, the rules have weaknesses (for example, what happens if the document
ends with a list item?). Feel free to improve on them. The complete source code for the rules is shown later in
Listing 20-5 (rules.py, which also contains the basic Rule class). Let’s begin with the heading rule:

class HeadingRule(Rule):
 """
 A heading is a single line that is at most 70 characters and
 that doesn't end with a colon.
 """
 type = 'heading'
 def condition(self, block):
 return not '\n' in block and len(block) <= 70 and not block[-1] == ':'

Chapter 20 ■ Project 1: Instant Markup

364

The attribute type has been set to the string 'heading', which is used by the action method inherited from
Rule. The condition simply checks that the block does not contain a newline (\n) character, that its length is
at most 70, and that the last character is not a colon.

The title rule is similar but works only once, for the first block. After that, it ignores all blocks because its
attribute first has been set to False.

class TitleRule(HeadingRule):
 """
 The title is the first block in the document, provided that it is
 a heading.
 """
 type = 'title'
 first = True

 def condition(self, block):
 if not self.first: return False
 self.first = False
 return HeadingRule.condition(self, block)

The list item rule condition is a direct implementation of the preceding specification.

class ListItemRule(Rule):
 """
 A list item is a paragraph that begins with a hyphen. As part of
 the formatting, the hyphen is removed.
 """
 type = 'listitem'
 def condition(self, block):
 return block[0] == '-'
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block[1:].strip())
 handler.end(self.type)
 return True

Its action is a reimplementation of that found in Rule. The only difference is that it removes the first
character from the block (the hyphen) and strips away excessive whitespace from the remaining text. The
markup provides its own “list bullet,” so you won’t need the hyphen anymore.

All the rule actions so far have returned True. The list rule does not because it is triggered when you
encounter a list item after a nonlist item or when you encounter a nonlist item after a list item. Because it
doesn’t actually mark up these blocks but merely indicates the beginning and end of a list (a group of list
items), you don’t want to halt the rule processing—so it returns False.

class ListRule(ListItemRule):
 """
 A list begins between a block that is not a list item and a
 subsequent list item. It ends after the last consecutive list
 item.
 """
 type = 'list'
 inside = False

Chapter 20 ■ Project 1: Instant Markup

365

 def condition(self, block):
 return True
 def action(self, block, handler):
 if not self.inside and ListItemRule.condition(self, block):
 handler.start(self.type)
 self.inside = True
 elif self.inside and not ListItemRule.condition(self, block):
 handler.end(self.type)
 self.inside = False
 return False

The list rule might require some further explanation. Its condition is always true because you want to
examine all blocks. In the action method, you have two alternatives that may lead to action.

•	 If the attribute inside (indicating whether the parser is currently inside the list) is
false (as it is initially) and the condition from the list item rule is true, you have just
entered a list. Call the appropriate start method of the handler, and set the inside
attribute to True.

•	 Conversely, if inside is true and the list item rule condition is false, you have just
left a list. Call the appropriate end method of the handler, and set the inside
attribute to False.

After this processing, the function returns False to let the rule handling continue. (This means, of course,
that the order of the rules is critical.)

The final rule is ParagraphRule. Its condition is always true because it is the “default” rule. It is added as
the last element of the rule list and handles all blocks that aren’t dealt with by any other rule.

class ParagraphRule(Rule):
 """
 A paragraph is simply a block that isn't covered by any of the
 other rules.
 """
 type = 'paragraph'
 def condition(self, block):
 return True

The filters are simply regular expressions. Let’s add three filters: one for emphasis, one for URLs, and one for
email addresses. Let’s use the following three regular expressions:

r'*(.+?)*'
r'(http://[\.a-zA-Z/]+)'
r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)'

The first pattern (emphasis) matches an asterisk followed by one or more arbitrary characters (matching as
few as possible, hence the question mark), followed by another asterisk. The second pattern (URLs) matches
the string 'http://' (here, you could add more protocols) followed by one or more characters that are dots,
letters, or slashes. (This pattern will not match all legal URLs—feel free to improve it.) Finally, the email pattern
matches a sequence of letters and dots followed by an at sign (@), followed by more letters and dots, finally
followed by a sequence of letters, ensuring that you don’t end with a dot. (Again, feel free to improve this.)

Chapter 20 ■ Project 1: Instant Markup

366

Putting It All Together
You now just need to create a Parser object and add the relevant rules and filters. Let’s do that by creating a
subclass of Parser that does the initialization in its constructor. Then let’s use that to parse sys.stdin.
The final program is shown in Listings 20-4 through 20-6. (These listings depend on the utility code in
Listing 20-2.) The final program may be run just like the prototype.

$ python markup.py < test_input.txt > test_output.html

Listing 20-4.  The Handlers (handlers.py)

class Handler:
 """
 An object that handles method calls from the Parser.

 The Parser will call the start() and end() methods at the
 beginning of each block, with the proper block name as a
 parameter. The sub() method will be used in regular expression
 substitution. When called with a name such as 'emphasis', it will
 return a proper substitution function.
 """
 def callback(self, prefix, name, *args):
 method = getattr(self, prefix + name, None)
 if callable(method): return method(*args)
 def start(self, name):
 self.callback('start_', name)
 def end(self, name):
 self.callback('end_', name)
 def sub(self, name):
 def substitution(match):
 result = self.callback('sub_', name, match)
 if result is None: match.group(0)
 return result
 return substitution

class HTMLRenderer(Handler):
 """
 A specific handler used for rendering HTML.

 The methods in HTMLRenderer are accessed from the superclass
 Handler's start(), end(), and sub() methods. They implement basic
 markup as used in HTML documents.
 """
 def start_document(self):
 print('<html><head><title>...</title></head><body>')
 def end_document(self):
 print('</body></html>')
 def start_paragraph(self):
 print('<p>')
 def end_paragraph(self):
 print('</p>')

Chapter 20 ■ Project 1: Instant Markup

367

 def start_heading(self):
 print('<h2>')
 def end_heading(self):
 print('</h2>')
 def start_list(self):
 print('')
 def end_list(self):
 print('')
 def start_listitem(self):
 print('')
 def end_listitem(self):
 print('')
 def start_title(self):
 print('<h1>')
 def end_title(self):
 print('</h1>')
 def sub_emphasis(self, match):
 return '{}'.format(match.group(1))
 def sub_url(self, match):
 return '{}'.format(match.group(1), match.group(1))
 def sub_mail(self, match):
 return '{}'.format(match.group(1), match.group(1))
 def feed(self, data):
 print(data)

Listing 20-5.  The Rules (rules.py)

class Rule:
 """
 Base class for all rules.
 """
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block)
 handler.end(self.type)
 return True

class HeadingRule(Rule):
 """
 A heading is a single line that is at most 70 characters and
 that doesn't end with a colon.
 """
 type = 'heading'
 def condition(self, block):
 return not '\n' in block and len(block) <= 70 and not block[-1] == ':'

class TitleRule(HeadingRule):
 """
 The title is the first block in the document, provided that
 it is a heading.
 """

Chapter 20 ■ Project 1: Instant Markup

368

 type = 'title'
 first = True

 def condition(self, block):
 if not self.first: return False
 self.first = False
 return HeadingRule.condition(self, block)

class ListItemRule(Rule):
 """
 A list item is a paragraph that begins with a hyphen. As part of the
 formatting, the hyphen is removed.
 """
 type = 'listitem'
 def condition(self, block):
 return block[0] == '-'
 def action(self, block, handler):
 handler.start(self.type)
 handler.feed(block[1:].strip())
 handler.end(self.type)
 return True

class ListRule(ListItemRule):
 """
 A list begins between a block that is not a list item and a
 subsequent list item. It ends after the last consecutive list item.
 """
 type = 'list'
 inside = False
 def condition(self, block):
 return True
 def action(self, block, handler):
 if not self.inside and ListItemRule.condition(self, block):
 handler.start(self.type)
 self.inside = True
 elif self.inside and not ListItemRule.condition(self, block):
 handler.end(self.type)
 self.inside = False
 return False

class ParagraphRule(Rule):
 """
 A paragraph is simply a block that isn't covered by any of the other rules.
 """
 type = 'paragraph'
 def condition(self, block):
 return True

Chapter 20 ■ Project 1: Instant Markup

369

Listing 20-6.  The Main Program (markup.py)

import sys, re
from handlers import *
from util import *
from rules import *

class Parser:
 """
 A Parser reads a text file, applying rules and controlling a handler.
 """
 def __init__(self, handler):
 self.handler = handler
 self.rules = []
 self.filters = []
 def addRule(self, rule):
 self.rules.append(rule)
 def addFilter(self, pattern, name):
 def filter(block, handler):
 return re.sub(pattern, handler.sub(name), block)
 self.filters.append(filter)

 def parse(self, file):
 self.handler.start('document')
 for block in blocks(file):
 for filter in self.filters:
 block = filter(block, self.handler)
 for rule in self.rules:
 if rule.condition(block):
 last = rule.action(block,
 self.handler)
 if last: break
 self.handler.end('document')

class BasicTextParser(Parser):
 """
 A specific Parser that adds rules and filters in its constructor.
 """
 def __init__(self, handler):
 Parser.__init__(self, handler)
 self.addRule(ListRule())
 self.addRule(ListItemRule())
 self.addRule(TitleRule())
 self.addRule(HeadingRule())
 self.addRule(ParagraphRule())

 self.addFilter(r'*(.+?)*', 'emphasis')
 self.addFilter(r'(http://[\.a-zA-Z/]+)', 'url')
 self.addFilter(r'([\.a-zA-Z]+@[\.a-zA-Z]+[a-zA-Z]+)', 'mail')

Chapter 20 ■ Project 1: Instant Markup

370

handler = HTMLRenderer()
parser = BasicTextParser(handler)

parser.parse(sys.stdin)

You can see the result of running the program on the sample text in Figure 20-2.

The second implementation is clearly more complicated and extensive than the first version. The added
complexity is well worth the effort because the resulting program is much more flexible and extensible.
Adapting it to new input and output formats is merely a matter of subclassing and initializing the existing
classes, rather than rewriting everything from scratch, as you would have had to do in the first prototype.

Further Exploration
Several expansions are possible for this program. Here are some possibilities:

•	 Add support for tables. Find all aligning left word borders and split the block into
columns.

•	 Add support for interpreting all uppercase words as emphasis. (To do this properly,
you will need to take into account acronyms, punctuations, names, and other
capitalized words.)

•	 Add support for LATEX output.

Figure 20-2.  The second attempt at generating a web page

Chapter 20 ■ Project 1: Instant Markup

371

•	 Write a handler that does something other than markup. Perhaps write a handler
that analyzes the document in some way.

•	 Create a script that automatically converts all text files in a directory to HTML files.

•	 Check out some existing plain-text formats, such as Markdown, reStructuredText, or
the format used in Wikipedia.

What Now?
Phew! After this strenuous (but hopefully useful) project, it’s time for some lighter material. In the next
chapter, we’ll create some graphics based on data that is automatically downloaded from the Internet. Piece
of cake.

373© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_21

CHAPTER 21

Project 2: Painting a Pretty Picture

In this project, you’ll learn how you can create graphics in Python. More specifically, you’ll be creating a
PDF file with graphics helping you visualize data that you read from a text file. While you could get such
functionality from a regular spreadsheet, Python gives you much more power, as you’ll see when you get to
the second implementation and automatically download your data from the Internet.

In the previous chapter, we looked at HTML and XML—and here is another acronym, which I guess
you’re probably familiar with: PDF, short for Portable Document Format. PDF is a format created by Adobe
that can represent any kind of document with graphics and text. The PDF file is not really editable (as, say,
a Microsoft Word file would be), but there is reader software freely available for most platforms, and the
PDF file should look the same no matter which reader you use or which platform you are on (as opposed
to HTML, with which the correct fonts may not be available, you would normally have to ship pictures as
separate files, and so on).

What’s the Problem?
Python is excellent for analyzing data. With its file-handling and string-processing facilities, it’s probably
easier to create some form of report from a data file than to create something similar in your average
spreadsheet, especially if what you want to do requires some complicated programming logic.

You have seen (in Chapter 3) how you can use string formatting to get pretty output—for example, if you
want to print numbers in columns. However, sometimes plain text just isn’t enough. (As they say, a picture
is worth a thousand words.) In this project, you’ll learn the basics of the ReportLab package, which enables
you to create graphics and documents in the PDF format (and a few other formats) almost as easily as you
created plain text earlier.

As you play with the concepts in this project, I encourage you to find some application that is interesting
to you. I have chosen to use data about sunspots (from the Space Weather Prediction Center, a part of the US
National Oceanic and Atmospheric Administration) and to create a line diagram from these data.

The program should be able to do the following:

•	 Download a data file from the Internet

•	 Parse the data file and extract the interesting parts

•	 Create PDF graphics based on the data

As in the previous project, these goals might not be fully met by the first prototype.

http://dx.doi.org/10.1007/978-1-4842-0028-5_3

Chapter 21 ■ Project 2: Painting a Pretty Picture

374

Useful Tools
The crucial tool in this project is the graphics-generating package. Quite a few such packages are available;
I have chosen ReportLab because it is easy to use and has extensive functionality for both graphics and
document generation in PDF. If you want to go beyond the basics, you might also want to consider the PYX
graphics package (http://pyx.sf.net), which is really powerful and has support for TEX-based typography.

To get the ReportLab package, go to the official web site at http://www.reportlab.org. There you will
find the software, documentation, and samples. You can either download the library from the site or install it
via pip. When you have done this, you should be able to import the reportlab module, as follows:

>>> import reportlab
>>>

■■ Note A lthough I show you how some ReportLab features work in this project, much more functionality is
available. To learn more, I suggest you obtain the manuals available on the ReportLab web site. They are quite
readable and are much more comprehensive than this one chapter could possibly be.

Preparations
Before you start programming, you’ll need some data with which to test your program. I have chosen
(quite arbitrarily) to use data about sunspots, available from the web site of the Space Weather Prediction
Center (http://www.swpc.noaa.gov). You can find the data I use in my examples at ftp://ftp.swpc.noaa.
gov/pub/weekly/Predict.txt.

This data file is updated weekly and contains information about sunspots and radio flux. (Don’t ask me
what that means.) Once you have this file, you’re ready to start playing with the problem.

Here is a part of the file to give you an idea of how the data look:

Predicted Sunspot Number And Radio Flux Values
With Expected Ranges
#
-----Sunspot Number------ ----10.7 cm Radio Flux----
YR MO PREDICTED HIGH LOW PREDICTED HIGH LOW
#--
2016 03 30.9 31.9 29.9 96.9 97.9 95.9
2016 04 30.5 32.5 28.5 96.1 97.1 95.1
2016 05 30.4 33.4 27.4 94.9 96.9 92.9
2016 06 30.3 35.3 25.3 93.2 96.2 90.2
2016 07 30.2 35.2 25.2 91.6 95.6 87.6
2016 08 30.0 36.0 24.0 90.3 94.3 86.3
2016 09 29.8 36.8 22.8 89.5 94.5 84.5
2016 10 30.0 37.0 23.0 88.9 94.9 82.9
2016 11 30.1 38.1 22.1 88.1 95.1 81.1
2016 12 30.5 39.5 21.5 87.8 95.8 79.8

http://pyx.sf.net/
http://www.reportlab.org/
http://www.swpc.noaa.gov/
ftp://ftp.swpc.noaa.gov/pub/weekly/Predict.txt
ftp://ftp.swpc.noaa.gov/pub/weekly/Predict.txt

Chapter 21 ■ Project 2: Painting a Pretty Picture

375

First Implementation
In this first implementation, let’s just put the data into our source code, as a list of tuples. That way, it’s easily
accessible. Here is an example of how you can do it:

data = [
 # Year Month Predicted High Low
 (2016, 03, 30.9, 31.9, 29.9),
 (2016, 04, 30.5, 32.5, 28.5),
 # Add more data here
]

With that out of the way, let’s see how you can turn the data into graphics.

Drawing with ReportLab
ReportLab consists of many parts and enables you to create output in several ways. The most basic module
for generating PDFs is pdfgen. It contains a Canvas class with several low-level methods for drawing. To draw
a line on a Canvas called c, you call the c.line method, for example.

We’ll use the more high-level graphics framework (in the package reportlab.graphics and its
submodules), which will enable us to create various shape objects and to add them to a Drawing object that
you can later output to a file in PDF format.

Listing 21-1 shows a sample program that draws the string “Hello, world!” in the middle of a 100 × 100-point
PDF figure. (You can see the result in Figure 21-1.) The basic structure is as follows: You create a drawing of a
given size, you create graphical elements (in this case, a String object) with certain properties, and then you
add the elements to the drawing. Finally, the drawing is rendered into PDF format and saved to a file.

Listing 21-1.  A Simple ReportLab Program (hello_report.py)

from reportlab.graphics.shapes import Drawing, String
from reportlab.graphics import renderPDF

d = Drawing(100, 100)
s = String(50, 50, 'Hello, world!', textAnchor='middle')

d.add(s)

renderPDF.drawToFile(d, 'hello.pdf', 'A simple PDF file')

Chapter 21 ■ Project 2: Painting a Pretty Picture

376

The call to renderPDF.drawToFile saves your PDF file to a file called hello.pdf in the current directory.
The main arguments to the String constructor are its x and y coordinates and its text. In addition, you

can supply various attributes (such as font size, color, and so on). In this case, I’ve supplied a textAnchor,
which is the part of the string that should be placed at the point given by the coordinates.

Constructing Some PolyLines
To create a line diagram (a graph) of the sunspot data, you need to create some lines. In fact, you need to
create several lines that are linked. ReportLab has a special class for this: PolyLine.

A PolyLine is created with a list of coordinates as its first argument. This list is of the form [(x0, y0),
(x1, y1), ...], with each pair of x and y coordinates making one point on the PolyLine. See Figure 21-2
for a simple PolyLine.

Figure 21-1.  A simple ReportLab figure

Chapter 21 ■ Project 2: Painting a Pretty Picture

377

To make a line diagram, one polyline must be created for each column in the data set. Each point in these
polylines will consist of a time (constructed from the year and month) and a value (which is the number of
sunspots, taken from the relevant column). To get one of the columns (the values), list comprehensions can
be useful.

pred = [row[2] for row in data]

Here, pred (for “predicted”) will be a list of all the values in the third column of the data. You can use a
similar strategy for the other columns. (The time for each row would need to be calculated from both the
year and month, for example, year + month/12.)

Once you have the values and the timestamps, you can add your polylines to the drawing like this:

drawing.add(PolyLine(list(zip(times, pred)), strokeColor=colors.blue))

It isn’t necessary to set the stroke color, of course, but it makes it easier to tell the lines apart. (Note how zip
is used to combine the times and values into a list of tuples.)

Writing the Prototype
You now have what you need to write your first version of the program. The source code is shown in
Listing 21-2.

Figure 21-2.  PolyLine([(0, 0), (10, 0), (10, 10), (0, 10)])

Chapter 21 ■ Project 2: Painting a Pretty Picture

378

Listing 21-2.  The First Prototype for the Sunspot Graph Program (sunspots_proto.py)

from reportlab.lib import colors
from reportlab.graphics.shapes import *
from reportlab.graphics import renderPDF

data = [
Year Month Predicted High Low
 (2007, 8, 113.2, 114.2, 112.2),
 (2007, 9, 112.8, 115.8, 109.8),
 (2007, 10, 111.0, 116.0, 106.0),
 (2007, 11, 109.8, 116.8, 102.8),
 (2007, 12, 107.3, 115.3, 99.3),
 (2008, 1, 105.2, 114.2, 96.2),
 (2008, 2, 104.1, 114.1, 94.1),
 (2008, 3, 99.9, 110.9, 88.9),
 (2008, 4, 94.8, 106.8, 82.8),
 (2008, 5, 91.2, 104.2, 78.2),
]

drawing = Drawing(200, 150)

pred = [row[2]-40 for row in data]
high = [row[3]-40 for row in data]
low = [row[4]-40 for row in data]
times = [200*((row[0] + row[1]/12.0) - 2007)-110 for row in data]

drawing.add(PolyLine(list(zip(times, pred)), strokeColor=colors.blue))
drawing.add(PolyLine(list(zip(times, high)), strokeColor=colors.red))
drawing.add(PolyLine(list(zip(times, low)), strokeColor=colors.green))

drawing.add(String(65, 115, 'Sunspots', fontSize=18, fillColor=colors.red))
renderPDF.drawToFile(drawing, 'report1.pdf', 'Sunspots')

As you can see, I have adjusted the values and timestamps to get the positioning right. The resulting drawing
is shown in Figure 21-3.

Chapter 21 ■ Project 2: Painting a Pretty Picture

379

Although it is pleasing to have made a program that works, there is clearly still room for improvement.

Second Implementation
So, what did we learn from the prototype? We have figured out the basics of how to draw stuff with ReportLab.
We have also seen how we can extract the data in a way that works well for drawing the graph. However, there
are some weaknesses in the program. To position things properly, I had to add some ad hoc modifications to
the values and timestamps. And the program doesn’t actually get the data from anywhere (or, rather, it “gets”
the data from a list inside the program itself, rather than reading it from an outside source).

Unlike Project 1 (in Chapter 20), the second implementation won’t be much larger or more complicated
than the first. It will be an incremental improvement that uses some more appropriate features from
ReportLab and actually fetches its data from the Internet.

Getting the Data
As you saw in Chapter 14, you can fetch files across the Internet with the standard module urllib. Its
function urlopen works in a manner quite similar to open but takes a URL instead of a file name as its
argument. When you have opened the file and read its contents, you need to filter out what you don’t
need. The file contains empty lines (consisting of only whitespace) and lines beginning with some special
characters (# and :). The program should ignore these. (See the sample file fragment in the section
“Preparations” earlier in this chapter.)

Figure 21-3.  A simple sunspot graph

http://dx.doi.org/10.1007/978-1-4842-0028-5_20
http://dx.doi.org/10.1007/978-1-4842-0028-5_14

Chapter 21 ■ Project 2: Painting a Pretty Picture

380

Assuming that the URL is kept in a variable called URL and that the variable COMMENT_CHARS has been set
to the string '#:', you can get a list of rows (as in our original program) like this:

data = []
for line in urlopen(URL).readlines():
 line = line.decode()
 if not line.isspace() and not line[0] in COMMENT_CHARS:
 data.append([float(n) for n in line.split()])

The preceding code will include all the columns in the data list, although you aren’t particularly interested in
the ones pertaining to radio flux. However, those columns will be filtered out when you extract the columns
you really need (as you did in the original program).

■■ Note I f you are using a data source of your own (or if, by the time you read this, the data format of the
sunspot file has changed), you will, of course, need to modify this code accordingly.

Using the LinePlot Class
If you thought getting the data was surprisingly simple, drawing a prettier line plot isn’t much of a challenge
either. In a situation like this, it’s best to thumb through the documentation (in this case, the ReportLab
docs) to see if a feature that can do what you need already exists so you don’t need to implement it all
yourself. Luckily, there is just such a thing: the LinePlot class from the module reportlab.graphics.
charts.lineplots. Of course, you could have looked for this to begin with, but in the spirit of rapid
prototyping, you just used what was at hand to see what you could do. Now it’s time to go one step further.

The LinePlot is instantiated without any arguments, and then you set its attributes before adding it
to the Drawing. The main attributes you need to set are x, y, height, width, and data. The first four should
be self-explanatory; the latter is simply a list of point lists, each a list of tuples, like the one you used in your
PolyLines.

To top it off, let’s set the stroke color of each line. The final code is shown in Listing 21-3. The resulting
figure (which will, of course, look quite a bit different with different input data) is shown in Figure 21-4.

Listing 21-3.  The Final Sunspot Program (sunspots.py)

from urllib.request import urlopen
from reportlab.graphics.shapes import *
from reportlab.graphics.charts.lineplots import LinePlot
from reportlab.graphics.charts.textlabels import Label
from reportlab.graphics import renderPDF

URL = 'ftp://ftp.swpc.noaa.gov/pub/weekly/Predict.txt'
COMMENT_CHARS = '#:'

drawing = Drawing(400, 200)
data = []
for line in urlopen(URL).readlines():
 line = line.decode()
 if not line.isspace() and line[0] not in COMMENT_CHARS:
 data.append([float(n) for n in line.split()])

Chapter 21 ■ Project 2: Painting a Pretty Picture

381

pred = [row[2] for row in data]
high = [row[3] for row in data]
low = [row[4] for row in data]
times = [row[0] + row[1]/12.0 for row in data]

lp = LinePlot()
lp.x = 50
lp.y = 50
lp.height = 125
lp.width = 300
lp.data = [list(zip(times, pred)),
 list(zip(times, high)),
 list(zip(times, low))]
lp.lines[0].strokeColor = colors.blue
lp.lines[1].strokeColor = colors.red
lp.lines[2].strokeColor = colors.green

drawing.add(lp)

drawing.add(String(250, 150, 'Sunspots',
 fontSize=14, fillColor=colors.red))

renderPDF.drawToFile(drawing, 'report2.pdf', 'Sunspots')

Figure 21-4.  The final sunspot graph

Chapter 21 ■ Project 2: Painting a Pretty Picture

382

Further Exploration
Many graphics and plotting packages are available for Python. One good alternative to ReportLab is PYX,
which I mentioned earlier in this chapter. Using either ReportLab or PYX (or some other package), you could
try to incorporate automatically generated graphics into a document (perhaps generating parts of that as
well). You could use some of the techniques from Chapter 20 to add markup to the text. If you want to create
a PDF document, then Platypus, a part of ReportLab, is useful for that. (You could also integrate the PDF
graphics with some typesetting system such as LATEX.) If you want to create web pages, there are ways of
creating pixmap graphics (such as GIF or PNG) using Python as well—just do a web search on the topic.

If your primary goal is to plot data (which is what we did in this project), you have many alternatives
to ReportLab and PYX. One good option is Matplotlib/pylab (http://matplotlib.org), but a lot of other
similar packages are available.

What Now?
In the first project, you learned how to add markup to a plain-text file by creating an extensible parser. In the
next project, you’ll learn about analyzing marked-up text (in XML) by using parser mechanisms that already
exist in the Python standard library. The goal of the project is to use a single XML file to specify an entire
web site, which will then be generated automatically (with files, directories, added headers, and footers) by
your program. The techniques you learn in the next project will be applicable to XML parsing in general, and
given the ubiquity of XML, that can’t hurt.

http://dx.doi.org/10.1007/978-1-4842-0028-5_20
http://matplotlib.org/

383© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_22

CHAPTER 22

Project 3: XML for All Occasions

I mentioned XML briefly in Project 1. Now it’s time to examine it in more detail. In this project, you see how
XML can be used to represent many kinds of data and how XML files can be processed with the Simple API
for XML, or SAX. The goal of this project is to generate a full web site from a single XML file that describes
the various web pages and directories.

In this chapter, I assume that you know what XML is and how to write it. If you know some HTML,
you’re already familiar with the basics. XML isn’t really a specific language (such as HTML); it’s more like
a set of rules that define a class of languages. Basically, you still write tags the same way as in HTML, but in
XML you can invent tag names yourself. Such specific sets of tag names and their structural relationships
can be described in Document Type Definitions or XML Schemas—I won’t be discussing those here.

For a concise description of what XML is, see the World Wide Web Consortium’s (W3C’s) “XML in
10 points” (https://www.w3.org/XML/1999/XML-in-10-points-19990327). A more thorough tutorial can be
found on the W3Schools web site (http://www.w3schools.com/xml). For more information about SAX, see
the official SAX web site (http://www.saxproject.org).

What’s the Problem?
The general problem you’ll be attacking in this project is to parse (read and process) XML files. Because you
can use XML to represent practically anything and you can do whatever you want with the data when you
parse it, the applications are boundless (as the title of this chapter indicates). The specific problem tackled
in this chapter is to generate a complete web site from a single XML file that contains the structure of the site
and the basic contents of each page.

Before you proceed with this project, I suggest that you take a few moments to read a bit about XML
and to check out its applications. That might give you a better understanding of when it might be a useful file
format and when it would just be overkill. (After all, plain-text files can be just fine when they’re all you need.)

ANYTHING, YOU SAY?

You may be skeptical about what you can really represent with XML. Well, let me give you just a few
examples of its uses:

•	 To mark up text for ordinary document processing—for example, in the form of XHTML
(http://www.w3.org/TR/xhtml1) or DocBook XML (http://www.docbook.org)

•	 To represent music (http://musicxml.org)

•	 To represent human moods, emotions, and character traits (http://xml.coverpages.
org/humanML.html)

https://www.w3.org/XML/1999/XML-in-10-points-19990327
http://www.w3schools.com/xml
http://www.saxproject.org
http://www.w3.org/TR/xhtml1
http://www.docbook.org/
http://musicxml.org/
http://xml.coverpages.org/
http://xml.coverpages.org/

Chapter 22 ■ Project 3: XML for All Occasions

384

•	 To describe any physical object (http://xml.coverpages.org/pml-ons.html)

•	 To call Python methods across a network (using XML-RPC, demonstrated in Chapter 27)

A sampling of existing applications of XML may be found on the XML Cover Pages (http://xml.
coverpages.org/xml.html#applications).

Let’s define the specific goals for the project.

•	 The entire web site should be described by a single XML file, which should include
information about individual web pages and directories.

•	 The program should create the directories and web pages as needed.

•	 It should be easy to change the general design of the entire web site and regenerate
all the pages with the new design.

This last point is perhaps enough to make it all worthwhile, but there are other benefits. By placing all your
contents in a single XML file, you could easily write other programs that use the same XML processing
techniques to extract various kinds of information, such as tables of contents, indices for custom search
engines, and so on. And even if you don’t use this for your web site, you could use it to create HTML-based
slide shows (or, by using something like ReportLab, discussed in the previous chapter, you could even create
PDF slide shows).

Useful Tools
Python has some built-in XML support, but if you’re using an old version, you may need to install some
extras yourself. In this project, you’ll need a functioning SAX parser. To see if you have a usable SAX parser,
try to execute the following:

>>> from xml.sax import make_parser
>>> parser = make_parser()

In all likelihood, no exceptions will be raised when you do this. In that case, you’re all set and can continue
to the “Preparations” section.

■■ Tip P lenty of XML tools for Python are out there. One very interesting alternative to the “standard” PyXML
framework is Fredrik Lundh’s ElementTree (and the C implementation, cElementTree), which is also included in
recent versions of the Python standard library, in the package xml.etree. If you have an older Python version,
you can get ElementTree from http://effbot.org/zone. It’s quite powerful and easy to use and may well be
worth a look if you’re serious about using XML in Python.

If you do get an exception, you must install PyXML; a web search should point you in the right direction
(unless your Python is ancient, though it should come with XML support out of the box).

http://xml.coverpages.org/pml-ons.html
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://xml.coverpages.org/xml.html#applications
http://xml.coverpages.org/xml.html#applications
http://effbot.org/zone

Chapter 22 ■ Project 3: XML for All Occasions

385

Preparations
Before you can write the program that processes your XML files, you must design your XML format. What
tags do you need, what attributes should they have, and which tags should go where? To find out, let’s first
consider what it is you want your format to describe.

The main concepts are web site, directory, page, name, title, and contents.

•	 You won’t be storing any information about the web site itself, so the web site is just
the top-level element enclosing all the files and directories.

•	 A directory is mainly a container for files and other directories.

•	 A page is a single web page.

•	 Both directories and web pages need names. These will be used as directory names
and file names, as they will appear in the file system and the corresponding URLs.

•	 Each web page should have a title (not the same as its file name).

•	 Each web page will also have some contents. We’ll just use plain XHTML to represent
the contents here. That way, we can simply pass it through to the final web pages and
let the browsers interpret it.

In short, your document will consist of a single website element, containing several directory and
page elements, each of the directory elements optionally containing more pages and directories. The
directory and page elements will have an attribute called name, which will contain their name. In addition,
the page tag has a title attribute. The page element contains XHTML code (of the type found inside the
XHTML body tag). A sample file is shown in Listing 22-1.

Listing 22-1.  A Simple Web Site Represented As an XML File (website.xml)

<website>
 <page name="index" title="Home Page">
 <h1>Welcome to My Home Page</h1>

 <p>Hi, there. My name is Mr. Gumby, and this is my home page.
 Here are some of my interests:</p>

 Shouting
 Sleeping
 Eating

 </page>
 <directory name="interests">
 <page name="shouting" title="Shouting">
 <h1>Mr. Gumby's Shouting Page</h1>

 <p>...</p>
 </page>
 <page name="sleeping" title="Sleeping">
 <h1>Mr. Gumby's Sleeping Page</h1>

 <p>...</p>
 </page>

Chapter 22 ■ Project 3: XML for All Occasions

386

 <page name="eating" title="Eating">
 <h1>Mr. Gumby's Eating Page</h1>

 <p>...</p>
 </page>
 </directory>
</website>

First Implementation
At this point, we haven’t yet looked at how XML parsing works. The approach we are using here (called SAX)
consists of writing a set of event handlers (just as in GUI programming) and then letting an existing XML
parser call these handlers as it reads the XML document.

WHAT ABOUT DOM?

There are two common ways of dealing with XML in Python (and other programming languages, for
that matter): SAX and the Document Object Model (DOM). A SAX parser reads through the XML file and
tells you what it sees (text, tags, and attributes), storing only small parts of the document at a time. This
makes SAX simple, fast, and memory-efficient, which is why I have chosen to use it in this chapter.
DOM takes another approach: it constructs a data structure (the document tree), which represents the
entire document. This is slower and requires more memory but can be useful if you want to manipulate
the structure of your document, for example.

Creating a Simple Content Handler
Several event types are available when parsing with SAX, but let’s restrict ourselves to three: the beginning of an
element (the occurrence of an opening tag), the end of an element (the occurrence of a closing tag), and plain
text (characters). To parse the XML file, let’s use the parse function from the xml.sax module. This function
takes care of reading the file and generating the events, but as it generates these events, it needs some event
handlers to call. These event handlers will be implemented as methods of a content handler object. You’ll
subclass the ContentHandler class from xml.sax.handler because it implements all the necessary event
handlers (as dummy operations that have no effect), and you can override only the ones you need.

Let’s begin with a minimal XML parser (assuming that your XML file is called website.xml).

from xml.sax.handler import ContentHandler
from xml.sax import parse

class TestHandler(ContentHandler): pass
parse('website.xml', TestHandler())

If you execute this program, it would seem that nothing happens, but you shouldn’t get any error messages
either. Behind the scenes, the XML file is parsed, and the default event handlers are called, but because they
don’t do anything, you won’t see any output.

Chapter 22 ■ Project 3: XML for All Occasions

387

Let’s try a simple extension. Add the following method to the TestHandler class:

def startElement(self, name, attrs):
 print(name, attrs.keys())

This overrides the default startElement event handler. The parameters are the relevant tag name and its
attributes (kept in a dictionary-like object). If you run the program again (using website.xml from
Listing 22-1), you see the following output:

website []
page [u'name', u'title']
h1 []
p []
ul []
li []
a [u'href']
li []
a [u'href']
li []
a [u'href']
directory [u'name']
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []
page [u'name', u'title']
h1 []
p []

How this works should be pretty clear. In addition to startElement, we’ll use endElement (which takes only a
tag name as its argument) and characters (which takes a string as its argument).

The following is an example that uses all these three methods to build a list of the headlines (the h1
elements) of the web site file:

from xml.sax.handler import ContentHandler
from xml.sax import parse

class HeadlineHandler(ContentHandler):

 in_headline = False

 def __init__(self, headlines):
 super().__init__()
 self.headlines = headlines
 self.data = []

 def startElement(self, name, attrs):
 if name == 'h1':
 self.in_headline = True

Chapter 22 ■ Project 3: XML for All Occasions

388

 def endElement(self, name):
 if name == 'h1':
 text = ''.join(self.data)
 self.data = []
 self.headlines.append(text)
 self.in_headline = False

 def characters(self, string):
 if self.in_headline:
 self.data.append(string)

headlines = []
parse('website.xml', HeadlineHandler(headlines))

print('The following <h1> elements were found:')
for h in headlines:
 print(h)

Note that the HeadlineHandler keeps track of whether it’s currently parsing text that is inside a pair of h1
tags. This is done by setting self.in_headline to True when startElement finds an h1 tag and setting self.
in_headline to False when endElement finds an h1 tag. The characters method is automatically called
when the parser finds some text. As long as the parser is between two h1 tags (self.in_headline is True),
characters will append the string (which may be just a part of the text between the tags) to self.data,
which is a list of strings. The task of joining these text fragments, appending them to self.headlines (as a
single string), and resetting self.data to an empty list also befalls endElement. This general approach (of
using Boolean variables to indicate whether you are currently “inside” a given tag type) is quite common in
SAX programming.

Running this program (again, with the website.xml file from Listing 22-1), you get the following output:

The following <h1> elements were found:
Welcome to My Home Page
Mr. Gumby's Shouting Page
Mr. Gumby's Sleeping Page
Mr. Gumby's Eating Page

Creating HTML Pages
Now you’re ready to make the prototype. For now, let’s ignore the directories and concentrate on creating
HTML pages. You need to create a slightly embellished event handler that does the following:

•	 At the start of each page element, opens a new file with the given name, and writes a
suitable HTML header to it, including the given title

•	 At the end of each page element, writes a suitable HTML footer to the file, and
closes it

•	 While inside the page element, passes through all tags and characters without
modifying them (writes them to the file as they are)

•	 While not inside a page element, ignores all tags (such as website and directory)

Chapter 22 ■ Project 3: XML for All Occasions

389

Most of this is pretty straightforward (at least if you know a bit about how HTML documents are
constructed). There are two problems, however, which may not be completely obvious.

•	 You can’t simply “pass through” tags (write them directly to the HTML file you’re
building) because you are given their names only (and possibly some attributes).
You must reconstruct the tags (with angle brackets and so forth) yourself.

•	 SAX itself gives you no way of knowing whether you are currently “inside” a page
element.

You must keep track of that sort of thing yourself (as you did in the HeadlineHandler example). For this
project, you’re interested only in whether or not to pass through tags and characters, so you’ll use a Boolean
variable called passthrough, which you’ll update as you enter and leave the pages.

See Listing 22-2 for the code for the simple program.

Listing 22-2.  A Simple Page Maker Script (pagemaker.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse

class PageMaker(ContentHandler):

 passthrough = False

 def startElement(self, name, attrs):
 if name == 'page':
 self.passthrough = True
 self.out = open(attrs['name'] + '.html', 'w')
 self.out.write('<html><head>\n')
 self.out.write('<title>{}</title>\n'.format(attrs['title']))
 self.out.write('</head><body>\n')
 elif self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' {}="{}"'.format(key, val))
 self.out.write('>')

 def endElement(self, name):
 if name == 'page':
 self.passthrough = False
 self.out.write('\n</body></html>\n')
 self.out.close()
 elif self.passthrough:
 self.out.write('</{}>'.format(name))

 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

parse('website.xml', PageMaker())

You should execute this in the directory in which you want your files to appear. Note that even if two pages
are in two different directory elements, they will end up in the same real directory. (That will be fixed in our
second implementation.)

Chapter 22 ■ Project 3: XML for All Occasions

390

Again, using the file website.xml from Listing 22-1, you get four HTML files. The file called index.html
contains the following:

<html><head>
<title>Home Page</title>
</head><body>

<h1>Welcome to My Home Page</h1>

<p>Hi, there. My name is Mr. Gumby, and this is my home page. Here are some of my
interests:</p>

 Shouting
 Sleeping
 Eating

</body></html>

Figure 22-1 shows how this page looks when viewed in a browser.

Figure 22-1.  A generated web page

Chapter 22 ■ Project 3: XML for All Occasions

391

Looking at the code, two main weaknesses should be obvious.

•	 It uses if statements to handle the various event types. If you need to handle many
such event types, your if statements will get large and unreadable.

•	 The HTML code is hardwired. It should be easy to replace.

Both of these weaknesses will be addressed in the second implementation.

Second Implementation
Because the SAX mechanism is so low-level and basic, you may often find it useful to write a mix-in class
that handles some administrative details such as gathering character data, managing Boolean state variables
(such as passthrough), or dispatching the events to your own custom event handlers. The state and data
handling are pretty simple in this project, so let’s focus on the handler dispatch.

A Dispatcher Mix-In Class
Rather than needing to write large if statements in the standard generic event handlers (such as
startElement), it would be nice to just write your own specific ones (such as startPage) and have them
called automatically. You can implement that functionality in a mix-in class and then subclass the mix-in
along with ContentHandler.

■■ Note A s mentioned in Chapter 7, a mix-in is a class with limited functionality that is meant to be
subclassed along with some other more substantial class.

You want the following functionality in your program:

•	 When startElement is called with a name such as 'foo', it should attempt to find an
event handler called startFoo and call it with the given attributes.

•	 Similarly, if endElement is called with 'foo', it should try to call endFoo.

•	 If, in any of these methods, the given handler is not found, a method called
defaultStart (or defaultEnd, respectively) will be called, if present. If the default
handler isn’t present either, nothing should be done.

In addition, some care should be taken with the parameters. The custom handlers (for example, startFoo)
do not need the tag name as a parameter, while the custom default handlers (for example, defaultStart)
do. Also, only the start handlers need the attributes.

Confused? Let’s begin by writing the simplest parts of the class.

class Dispatcher:

 # ...

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)
 def endElement(self, name):
 self.dispatch('end', name)

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 22 ■ Project 3: XML for All Occasions

392

Here, the basic event handlers are implemented, and they simply call a method called dispatch, which takes
care of finding the appropriate handler, constructing the argument tuple, and then calling the handler with
those arguments. Here is the code for the dispatch method:

def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()
 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

The following is what happens:

	 1.	 From a prefix (either 'start' or 'end') and a tag name (for example, 'page'),
construct the method name of the handler (for example, 'startPage').

	 2.	 Using the same prefix, construct the name of the default handler (for example,
'defaultStart').

	 3.	 Try to get the handler with getattr, using None as the default value.

	 4.	 If the result is callable, assign an empty tuple to args.

	 5.	 Otherwise, try to get the default handler with getattr, again using None as the
default value. Also, set args to a tuple containing only the tag name (because the
default handler needs that).

	 6.	 If you are dealing with a start handler, add the attributes to the argument tuple
(args).

	 7.	 If your handler is callable (that is, it is either a viable specific handler or a viable
default handler), call it with the correct arguments.

Got that? This basically means that you can now write content handlers like this:

class TestHandler(Dispatcher, ContentHandler):
 def startPage(self, attrs):
 print('Beginning page', attrs['name'])
 def endPage(self):
 print('Ending page')

Because the dispatcher mix-in takes care of most of the plumbing, the content handler is fairly simple and
readable. (Of course, we’ll add more functionality in a little while.)

Factoring Out the Header, Footer, and Default Handling
This section is much easier than the previous one. Instead of doing the calls to self.out.write directly in
the event handler, we’ll create separate methods for writing the header and footer. That way, we can easily
override these methods by subclassing the event handler. Let’s make the default header and footer really
simple.

Chapter 22 ■ Project 3: XML for All Occasions

393

def writeHeader(self, title):
 self.out.write("<html>\n <head>\n <title>")
 self.out.write(title)
 self.out.write("</title>\n </head>\n <body>\n")

def writeFooter(self):
 self.out.write("\n </body>\n</html>\n")

Handling of the XHTML contents was also linked a bit too intimately with the original handlers.
The XHTML will now be handled by defaultStart and defaultEnd.

def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' {}="{}"'.format(key, val))
 self.out.write('>')

def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</{}>'.format(name))

This works just like before, except that I’ve moved the code to separate methods (which is often a good
thing). Now, on to the last piece of the puzzle.

Support for Directories
To create the necessary directories, you need the function os.makedirs, which makes all the necessary
directories in a given path. For example, os.makedirs('foo/bar/baz') creates the directory foo in the
current directory and then creates bar in foo and, finally, baz in bar. If foo already exists, only bar and baz
are created, and similarly, if bar also exists, only baz is created. However, if baz exists as well, an exception is
normally raised. To avoid this, we supply the keyword argument exist_ok=True. Another useful function is
os.path.join, which joins several paths with the correct separator (for example, / in UNIX and so forth).

At all times during the processing, keep the current directory path as a list of directory names,
referenced by the variable directory. When you enter a directory, append its name; when you leave it, pop
the name off. Assuming that directory is set up properly, you can define a function for ensuring that the
current directory exists.

def ensureDirectory(self):
 path = os.path.join(*self.directory)
 os.makedirs(path, exist_ok=True)

Notice how I’ve used argument splicing (with the star operator, *) on the directory list when supplying it to
os.path.join.

The base directory of our web site (for example, public_html) can be given as an argument to the
constructor, which then looks like this:

def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

Chapter 22 ■ Project 3: XML for All Occasions

394

The Event Handlers
Finally we’ve come to the event handlers. You need four of them: two for dealing with directories and two for
pages. The directory handlers simply use the directory list and the ensureDirectory method.

def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

def endDirectory(self):
 self.directory.pop()

The page handlers use the writeHeader and writeFooter methods. In addition, they set the passthrough
variable (to pass through the XHTML), and—perhaps most important—they open and close the file
associated with the page:

def startPage(self, attrs):
 filename = os.path.join(*self.directory + [attrs['name'] + '.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

The first line of startPage may look a little intimidating, but it is more or less the same as the first line of
ensureDirectory, except that you add the file name (and give it an .html suffix).

The full source code of the program is shown in Listing 22-3.

Listing 22-3.  The Web Site Constructor (website.py)

from xml.sax.handler import ContentHandler
from xml.sax import parse
import os

class Dispatcher:

 def dispatch(self, prefix, name, attrs=None):
 mname = prefix + name.capitalize()
 dname = 'default' + prefix.capitalize()
 method = getattr(self, mname, None)
 if callable(method): args = ()
 else:
 method = getattr(self, dname, None)
 args = name,
 if prefix == 'start': args += attrs,
 if callable(method): method(*args)

Chapter 22 ■ Project 3: XML for All Occasions

395

 def startElement(self, name, attrs):
 self.dispatch('start', name, attrs)

 def endElement(self, name):
 self.dispatch('end', name)

class WebsiteConstructor(Dispatcher, ContentHandler):

 passthrough = False

 def __init__(self, directory):
 self.directory = [directory]
 self.ensureDirectory()

 def ensureDirectory(self):
 path = os.path.join(*self.directory)
 os.makedirs(path, exist_ok=True)

 def characters(self, chars):
 if self.passthrough: self.out.write(chars)

 def defaultStart(self, name, attrs):
 if self.passthrough:
 self.out.write('<' + name)
 for key, val in attrs.items():
 self.out.write(' {}="{}"'.format(key, val))
 self.out.write('>')

 def defaultEnd(self, name):
 if self.passthrough:
 self.out.write('</{}>'.format(name))

 def startDirectory(self, attrs):
 self.directory.append(attrs['name'])
 self.ensureDirectory()

 def endDirectory(self):
 self.directory.pop()

 def startPage(self, attrs):
 filename = os.path.join(*self.directory + [attrs['name'] + '.html'])
 self.out = open(filename, 'w')
 self.writeHeader(attrs['title'])
 self.passthrough = True

 def endPage(self):
 self.passthrough = False
 self.writeFooter()
 self.out.close()

Chapter 22 ■ Project 3: XML for All Occasions

396

 def writeHeader(self, title):
 self.out.write('<html>\n <head>\n <title>')
 self.out.write(title)
 self.out.write('</title>\n </head>\n <body>\n')

 def writeFooter(self):
 self.out.write('\n </body>\n</html>\n')

parse('website.xml', WebsiteConstructor('public_html'))

Listing 22-3 generates the following files and directories:

•	 public_html/

•	 public_html/index.html

•	 public_html/interests/

•	 public_html/interests/shouting.html

•	 public_html/interests/sleeping.html

•	 public_html/interests/eating.html

Further Exploration
Now you have the basic program. What can you do with it? Here are some suggestions:

•	 Create a new ContentHandler for generating a table of contents or a menu (with
links) for the web site.

•	 Add navigational aids to the web pages that tell the users where (in which directory)
they are.

•	 Create a subclass of WebsiteConstructor that overrides writeHeader and
writeFooter to provide customized design.

•	 Create another ContentHandler that constructs a single web page from the XML file.

•	 Create a ContentHandler that summarizes your web site somehow, for example,
in RSS.

•	 Check out other tools for transforming XML, especially XML Transformations (XSLT).

•	 Create one or more PDF documents based on the XML file, using a tool such as
ReportLab’s Platypus (http://www.reportlab.org).

•	 Make it possible to edit the XML file through a web interface (see Chapter 25).

What Now?
After this foray into the world of XML parsing, let’s do some more network programming. In the next chapter,
we’ll create a program that can gather news items from various network sources and generate custom news
reports for you.

http://www.reportlab.org/
http://dx.doi.org/10.1007/978-1-4842-0028-5_25

397© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_23

CHAPTER 23

Project 4: In the News

The Internet is replete with news sources in many forms, including newspapers, video channels, blogs and
podcasts, to name a few. Some of these also provide services, such as RSS or Atom feeds, that let you retrieve
the latest news using relatively simple code, without having to parse their web pages. In this project, we’ll be
exploring a mechanism that predates the Web: the Network News Transfer Protocol (NNTP). We’ll go from
a simple prototype without any form of abstraction (no functions, no classes) to a generic system in which
some important abstractions have been added. We’ll be using the nntplib library, which lets you interact
with NNTP servers, but adding other protocols and mechanisms should be straightforward.

NNTP is a standard network protocol for managing messages posted on so-called Usenet discussion
groups. NNTP servers form a global network that collectively manages these newsgroups, and through an
NNTP client (also called a newsreader) you can post and read messages. The main network of NNTP servers,
called Usenet, was established in 1980 (although the NNTP protocol wasn’t used until 1985). Compared
to current web trends, this is quite “old school,” but most of the Internet is based (to some degree) on such
old-school technologies,1 and it probably doesn’t hurt to play around with the low-level stuff a bit. Also, you
could always replace the NNTP stuff in this chapter with some news-gathering module of your own (perhaps
using the web API of some social networking site like Facebook or Twitter).

What’s the Problem?
The program you write in this project will be an information-gathering agent, a program that can gather
information (more specifically, news) and compile a report for you. Given the network functionality you
have already encountered, that might not seem very difficult—and it isn’t, really. But in this project you go
a bit beyond the simple “download a file with urllib” approach. You use another network library that is a
bit more difficult to use than urllib, namely, nntplib. In addition, you get to refactor the program to allow
many types of news sources and various types of destinations, making a clear separation between the front
end and the back end, with the main engine in the middle.

The main goals for the final program are as follows:

•	 The program should be able to gather news from many different sources.

•	 It should be easy to add new news sources (and even new kinds of sources).

•	 The program should be able to dispatch its compiled news report to many different
destinations, in many different formats.

•	 It should be easy to add new destinations (and even new kinds of destinations).

1Did you know, for example, that the discussion groups at http://groups.google.com, such as sci.math and
rec.arts.sf.written, are really Usenet groups under the hood?

http://groups.google.com/

Chapter 23 ■ Project 4: In the News

398

Useful Tools
For this project, you don’t need to install separate software. However, you do need some standard library
modules, including one that you haven’t seen before, nntplib, which deals with NNTP servers. Instead of
explaining all the details of that module, let’s examine it through some prototyping.

Preparations
To be able to use nntplib, you need to have access to an NNTP server. If you’re not sure whether you do,
you could ask your ISP or system administrator for details. In the code examples in this chapter, I use the
newsgroup comp.lang.python.announce, so you should make sure that your news (NNTP) server has that
group, or you should find some other group you would like to use. If you don’t have access to an NNTP
server, several open servers are available for anyone to use. A quick web search for “free nntp server” should
give you some servers to choose from. (The code examples in the official documentation for nntplib use
news.gmane.org.) Assuming that your news server is news.foo.bar (this is not a real server name, and won’t
work), you can test your NNTP server like this:

>>> from nntplib import NNTP
>>> server = NNTP('news.foo.bar')
>>> server.group('comp.lang.python.announce')[0]

■■ Note T o connect to some servers, you may need to supply additional parameters for authentication. Consult
the Python Library Reference (https://docs.python.org/library/nntplib.html) for details on the optional
parameters of the NNTP constructor.

The result of the last line should be a string beginning with '211' (basically meaning that the server has the
group you asked for) or '411' (which means that the server doesn’t have the group). It might look something
like this:

'211 51 1876 1926 comp.lang.python.announce'

If the returned string starts with '411', you should use a newsreader to look for another group you might
want to use. (You may also get an exception with an equivalent error message.) If an exception is raised,
perhaps you got the server name wrong. Another possibility is that you were “timed out” between the time
you created the server object and the time you called the group method—the server may allow you to stay
connected for only a short period of time (such as 10 seconds). If you’re having trouble typing that fast,
simply put the code in a script and execute it (with an added print) or put the server object creation and
method call on the same line (separated by a semicolon).

First Implementation
In the spirit of prototyping, let’s just tackle the problem head on. The first thing you want to do is download
the most recent messages from a newsgroup on an NNTP server. To keep things simple, just print out the
result to standard output (with print). Before looking at the details of the implementation, you might want
to browse the source code in Listing 23-1 later in this section, and perhaps even execute the program to see
how it works. The program logic isn’t very complicated—the challenge lies mostly in using nntplib. We’ll be

http://docs.python.org/lib/module-nntplib.html)

Chapter 23 ■ Project 4: In the News

399

using one single object of the NNTP class, and as you saw in the previous section, this class is instantiated with
the name of an NNTP server. You need to call three methods on this instance.

•	 group, which selects a given newsgroup as the current one, and returns some
information about it, including the number of the last message

•	 over, which gives you overview information of a set of messages specified by their
numbers

•	 body, which returns the body text of a given message

Using the same fictitious server name as earlier, we can set things up as follows:

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)
howmany = 10

The howmany variable indicates how many articles we want to retrieve. We can then select our group.

resp, count, first, last, name = server.group(group)

The returned values are a general server response, the estimated number of messages in the group, the first
and last message numbers, and the name of the group. We’re mainly interested in last, which we’ll use
to construct the interval of article numbers we’re interested in, starting at start = last - howmany + 1
and ending with last. We supply this pair of numbers to the over method, which gives us a series of (id,
overview) pairs for the messages. We extract the subject from the overview and use the ID to fetch the
message body from the server.

The lines of the message body are returned as bytes. If we decode them using the default UTF-8, we may
get some illegal byte sequences if we’ve guessed wrong. Ideally, we should extract encoding info, but to keep
things simple, we’ll just use the Latin-1 encoding, which works for plain ASCII and won’t complain about
non-ASCII bytes. After printing all the articles, we call server.quit(), and that’s it. In a UNIX shell such as
bash, you could run this program like this:

$ python newsagent1.py | less

The use of less is useful for reading the articles one at a time. If you have no such pager program available,
you could rewrite the print part of the program to store the resulting text in a file, which you’ll also be doing
in the second implementation (see Chapter 11 for more information about file handling). The source code
for the simple news-gathering agent is shown in Listing 23-1.

Listing 23-1.  A Simple News-Gathering Agent (newsagent1.py)

from nntplib import NNTP

servername = 'news.foo.bar'
group = 'comp.lang.python.announce'
server = NNTP(servername)
howmany = 10

http://dx.doi.org/10.1007/978-1-4842-0028-5_11

Chapter 23 ■ Project 4: In the News

400

resp, count, first, last, name = server.group(group)

start = last - howmany + 1

resp, overviews = server.over((start, last))

for id, over in overviews:
 subject = over['subject']
 resp, info = server.body(id)
 print(subject)
 print('-' * len(subject))
 for line in info.lines:
 print(line.decode('latin1'))
 print()

server.quit()

Second Implementation
The first implementation worked but was quite inflexible in that it let you retrieve news only from Usenet
discussion groups. In the second implementation, you fix that by refactoring the code a bit. You add
structure and abstraction by creating some classes and methods to represent the various parts of the code.
Once you’ve done that, some of the parts may be replaced by other classes much more easily than you could
replace parts of the code in the original program.

Again, before immersing yourself in the details of the second implementation, you might want to skim
(and perhaps execute) the code in Listing 23-2, later in this chapter.

■■ Note  You need to set the clpa_server variable to a usable NNTP server before the code in Listing 23-2
will work.

So, what classes do you need? Let’s just do a quick review of the important nouns in the problem description,
as suggested in Chapter 7: information, agent, news, report, network, news source, destination, front end,
back end, and main engine. This list of nouns suggests the following main classes (or kinds of classes):
NewsAgent, NewsItem, Source, and Destination.

The various sources will constitute the front end, and the destinations will constitute the back end, with
the news agent sitting in the middle.

The easiest of these is NewsItem. It represents only a piece of data, consisting of a title and a body
(a short text), and can be implemented as follows:

class NewsItem:

 def __init__(self, title, body):

 self.title = title
 self.body = body

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

Chapter 23 ■ Project 4: In the News

401

To find out exactly what is needed from the news sources and the news destinations, it could be a good idea
to start by writing the agent itself. The agent must maintain two lists: one of sources and one of destinations.
Adding sources and destinations can be done through the methods addSource and addDestination.

class NewsAgent:

 def __init__(self):
 self.sources = []
 self.destinations = []

 def addSource(self, source):
 self.sources.append(source)

 def addDestination(self, dest):
 self.destinations.append(dest)

The only thing missing now is a method to distribute the news items from the sources to the destinations.
During distribution, each destination must have a method that returns all its news items, and each source
needs a method for receiving all the news items that are being distributed. Let’s call these methods getItems
and receiveItems. In the interest of flexibility, let’s just require getItems to return an arbitrary iterator
of NewsItems. To make the destinations easier to implement, however, let’s assume that receiveItems
is callable with a sequence argument (which can be iterated over more than once, to make a table of
contents before listing the news items, for example). After this has been decided, the distribute method of
NewsAgent simply becomes as follows:

def distribute(self):
 items = []
 for source in self.sources:
 items.extend(source.getItems())
 for dest in self.destinations:
 dest.receiveItems(items)

This iterates through all the sources, building a list of news items. Then it iterates through all the destinations
and supplies each of them with the full list of news items.

Now, all you need is a couple of sources and destinations. To begin testing, you can simply create a
destination that works like the printing in the first prototype.

class PlainDestination:

 def receiveItems(self, items):
 for item in items:
 print(item.title)
 print('-' * len(item.title))
 print(item.body)

Chapter 23 ■ Project 4: In the News

402

The formatting is the same; the difference is that you have encapsulated the formatting. It is now one of
several alternative destinations, rather than a hard-coded part of the program. A slightly more complicated
destination (HTMLDestination, which produces HTML) can be seen in Listing 23-2, later in this chapter. It
builds on the approach of PlainDestination, adding a few features.

•	 The text it produces is HTML.

•	 It writes the text to a specific file, rather than standard output.

•	 It creates a table of contents in addition to the main list of items.

And that’s it, really. The table of contents is created using hyperlinks that link to parts of the page. We’ll
accomplish this by using links of the form ... (where nn is some number), which leads
to the headline with the enclosing anchor tag ... (where nn should be the same number
as in the table of contents). The table of contents and the main listing of news items are built in two different
for loops. You can see a sample result (using the upcoming NNTPSource) in Figure 23-1.

When thinking about the design, I considered using a generic superclass to represent news sources
and one to represent news destinations. As it turns out, the sources and destinations don’t really share
any behavior, so there is no point in using a common superclass. As long as they implement the necessary

Figure 23-1.  An automatically generated news page

Chapter 23 ■ Project 4: In the News

403

methods (getItems and receiveItems) correctly, the NewsAgent will be happy. (This is an example of using
a protocol, as described in Chapter 9, rather than requiring a specific, common superclass.)

When creating an NNTPSource, much of the code can be snipped from the original prototype. As you will see
in Listing 23-2, the main differences from the original are the following:

•	 The code has been encapsulated in the getItems method. The servername and
group variables are now arguments to the constructor. Also, the howmany variable has
been turned into a constructor argument for this class.

•	 I’ve added a call to decode_header, which deals with some specialized encodings
used in header fields such as the subject.

•	 Instead of printing each news item directly, a NewsItem object is yielded (making
getItems a generator).

To show the flexibility of the design, let’s add another news source—one that can extract news items from
web pages (using regular expressions; see Chapter 10 for more information). SimpleWebSource
(see Listing 23-2) takes a URL and two regular expressions (one representing titles and one representing
bodies) as its constructor arguments. In getItems, it uses the regular expression methods findall to find all
the occurrences (titles and bodies) and zip to combine these. It then iterates over the list of (title, body)
pairs, yielding a NewsItem for each. As you can see, adding new kinds of sources (or destinations, for that
matter) isn’t very difficult.

To put the code to work, let’s instantiate an agent, some sources, and some destinations. In the function
runDefaultSetup (which is called if the module is run as a program), several such objects are instantiated.

•	 A SimpleWebSource for the Reuters web site, which uses two simple regular
expressions to extract the information it needs

■■ Note  The layout of the HTML on the Reuters pages might change, in which case you need to rewrite the
regular expressions. This also applies if you are using some other page, of course. Just view the HTML source
and try to find a pattern that applies.

•	 An NNTPSource for comp.lang.python, with howmany set to 10, so it works just like the
first prototype

•	 A PlainDestination, which prints all the news gathered

•	 An HTMLDestination, which generates a news page called news.html

When all of these objects have been created and added to the NewsAgent, the distribute method is called.
You can run the program like this:

$ python newsagent2.py

The resulting news.html page is shown in Figure 23-2. The full source code of the second implementation is
found in Listing 23-2.

http://dx.doi.org/10.1007/978-1-4842-0028-5_9
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 23 ■ Project 4: In the News

404

Listing 23-2.  A More Flexible News-Gathering Agent (newsagent2.py)

from nntplib import NNTP, decode_header
from urllib.request import urlopen
import textwrap
import re

class NewsAgent:
 """
 An object that can distribute news items from news sources to news
 destinations.
 """

 def __init__(self):
 self.sources = []
 self.destinations = []

 def add_source(self, source):
 self.sources.append(source)

Figure 23-2.  A news page with more than one source

Chapter 23 ■ Project 4: In the News

405

 def addDestination(self, dest):
 self.destinations.append(dest)

 def distribute(self):
 """
 Retrieve all news items from all sources, and Distribute them to all
 destinations.
 """
 items = []
 for source in self.sources:
 items.extend(source.get_items())
 for dest in self.destinations:
 dest.receive_items(items)

class NewsItem:
 """
 A simple news item consisting of a title and body text.
 """
 def __init__(self, title, body):
 self.title = title
 self.body = body

class NNTPSource:
 """
 A news source that retrieves news items from an NNTP group.
 """
 def __init__(self, servername, group, howmany):
 self.servername = servername
 self.group = group
 self.howmany = howmany

 def get_items(self):
 server = NNTP(self.servername)
 resp, count, first, last, name = server.group(self.group)
 start = last - self.howmany + 1
 resp, overviews = server.over((start, last))
 for id, over in overviews:
 title = decode_header(over['subject'])
 resp, info = server.body(id)
 body = '\n'.join(line.decode('latin')
 for line in info.lines) + '\n\n'
 yield NewsItem(title, body)
 server.quit()

class SimpleWebSource:
 """
 A news source that extracts news items from a web page using regular
 expressions.
 """
 def __init__(self, url, title_pattern, body_pattern, encoding='utf8'):
 self.url = url

Chapter 23 ■ Project 4: In the News

406

 self.title_pattern = re.compile(title_pattern)
 self.body_pattern = re.compile(body_pattern)
 self.encoding = encoding

 def get_items(self):
 text = urlopen(self.url).read().decode(self.encoding)
 titles = self.title_pattern.findall(text)
 bodies = self.body_pattern.findall(text)
 for title, body in zip(titles, bodies):
 yield NewsItem(title, textwrap.fill(body) + '\n')

class PlainDestination:
 """
 A news destination that formats all its news items as plain text.
 """
 def receive_items(self, items):
 for item in items:
 print(item.title)
 print('-' * len(item.title))
 print(item.body)

class HTMLDestination:
 """
 A news destination that formats all its news items as HTML.
 """
 def __init__(self, filename):
 self.filename = filename

 def receive_items(self, items):

 out = open(self.filename, 'w')
 print("""
 <html>
 <head>
 <title>Today's News</title>
 </head>
 <body>
 <h1>Today's News</h1>
 """, file=out)

 print('', file=out)
 id = 0
 for item in items:
 id += 1
 print(' {}'
 .format(id, item.title), file=out)
 print('', file=out)

 id = 0
 for item in items:
 id += 1

Chapter 23 ■ Project 4: In the News

407

 print('<h2>{}</h2>'
 .format(id, item.title), file=out)
 print('<pre>{}</pre>'.format(item.body), file=out)

 print("""
 </body>
 </html>
 """, file=out)

def runDefaultSetup():
 """
 A default setup of sources and destination. Modify to taste.
 """
 agent = NewsAgent()

 # A SimpleWebSource that retrieves news from Reuters:
 reuters_url = 'http://www.reuters.com/news/world'
 reuters_title = r'<h2>(.*?)'
 reuters_body = r'</h2><p>(.*?)</p>'
 reuters = SimpleWebSource(reuters_url, reuters_title, reuters_body)

 agent.add_source(reuters)

 # An NNTPSource that retrieves news from comp.lang.python.announce:
 clpa_server = 'news.foo.bar' # Insert real server name
 clpa_server = 'news.ntnu.no'
 clpa_group = 'comp.lang.python.announce'
 clpa_howmany = 10
 clpa = NNTPSource(clpa_server, clpa_group, clpa_howmany)

 agent.add_source(clpa)

 # Add plain-text destination and an HTML destination:
 agent.addDestination(PlainDestination())
 agent.addDestination(HTMLDestination('news.html'))

 # Distribute the news items:
 agent.distribute()

if __name__ == '__main__': runDefaultSetup()

Further Exploration
Because of its extensible nature, this project invites further exploration. Here are some ideas:

•	 Create a more ambitious WebSource, using the screen-scraping techniques discussed
in Chapter 15.

•	 Create an RSSSource, which parses RSS, also discussed briefly in Chapter 15.

•	 Improve the layout for the HTMLDestination.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 23 ■ Project 4: In the News

408

•	 Create a page monitor that gives you a news item if a given web page has changed
since the last time you examined it. (Just download a copy when it has changed and
compare that later. Take a look at the standard library module filecmp for comparing
files.)

•	 Create a CGI version of the news script (see Chapter 15).

•	 Create an EmailDestination, which sends you an email message with news items.
(See the standard library module smtplib for sending email.)

•	 Add command-line switches to decide which news formats you want. (See the
standard library module argparse for some techniques.)

•	 Give the destinations information about where the news comes from, to allow
fancier layout.

•	 Try to categorize your news items (by searching for keywords, perhaps).

•	 Create an XMLDestination, which produces XML files suitable for the site builder in
Project 3 (Chapter 22). Voilà—you have a news web site.

What Now?
We’ve done a lot of file creation and file handling (including downloading the required files), and although
that is very useful for a lot of things, it isn’t very interactive. In the next project, we’ll create a chat server,
where you can chat with your friends online. You can even extend it to create your own virtual (textual)
environment.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_22

409© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_24

CHAPTER 24

Project 5: A Virtual Tea Party

In this project, we’ll do some serious network programming. We’ll write a chat server—a program that lets
several people connect via the Internet and chat with each other in real time. There are many ways to create
such a beast in Python. A simple and natural approach might be to use the Twisted framework (discussed
in Chapter 14), for example, with the LineReceiver class taking center stage. In this chapter, I’ll stick to the
asynchronous networking modules of the standard library.

It’s worth noting that at the time of writing, Python seems to be in a sort of interregnum on this front.
While the documentation for the asyncore and asynchat modules carries a note saying they are only
included for backward compatibility and that future development should use the asyncio module, the
documentation for asyncio says that it’s included on a provisional basis only and that it may be removed in
the future. I’ll take the more conservative route and use asyncore and asynchat. If you like, you could try out
some of the alternative methods (such as forking or threading) discussed in Chapter 14, or even rewrite the
project using asyncio.

What’s the Problem?
We’re going to write a relatively low-level server for online chatting. While this functionality is available
through a host of social media and messaging services, writing your own can be useful to learn more about
network programming. Let’s say we have the following requirements:

•	 The server should be able to receive multiple connections from different users.

•	 It should let the users act in parallel.

•	 It should be able to interpret commands such as say or logout.

•	 The server should be easily extensible.

The two things that will require special tools are the network connections and the asynchronous nature of
the program.

Useful Tools
The only new tools you need in this project are the asyncore module from the standard library and its
relative asynchat. I’ll describe the basics of how these work. You can find more details about them in the
Python Library Reference. As discussed in Chapter 14, the basic component in a network program is the
socket. Sockets can be created directly by importing the socket module and using the functions there. So
what do you need asyncore for?

http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://dx.doi.org/10.1007/978-1-4842-0028-5_14

Chapter 24 ■ Project 5: A Virtual Tea Party

410

The asyncore framework enables you to juggle several users who are connected simultaneously.
Imagine a scenario in which you have no special tools for handling this. When you start up the server, it waits
for users to connect. When one user is connected, it starts reading data from that user and supplying results
through a socket. But what happens if another user is already connected? The second user to connect must
wait until the first one has finished. In some cases, that will work just fine, but when you’re writing a chat
server, the whole point is that more than one user can be connected—how else could users chat with one
another?

The asyncore framework is based on an underlying mechanism (the select function from the select
module, as discussed in Chapter 14) that allows the server to serve all the connected users in a piecemeal
fashion. Instead of reading all the available data from one user before going on to the next, only some data is
read. Also, the server reads only from the sockets where there is data to be read. This is done again and again,
in a loop. Writing is handled in a similar manner. You could implement this yourself using just the modules
socket and select, but asyncore and asynchat provide a very useful framework that takes care of the
details for you. (For alternative ways of implementing parallel user connections, see the section “Multiple
Connections” in Chapter 14.)

Preparations
The first thing you need is a computer that’s connected to a network (such as the Internet); otherwise, others
won’t be able to connect to your chat server. (It is possible to connect to the chat server from your own
machine, but that might not be much fun in the long run.) To be able to connect, the user must know the
address of your machine (a machine name such as foo.bar.baz.com or an IP address). In addition, the user
must know the port number used by your server. You can set this in your program; in the code in this chapter,
I use the (rather arbitrary) port number 5005.

■■ Note A s mentioned in Chapter 14, certain port numbers are restricted and require administrator privileges.
In general, numbers greater than 1023 are okay.

To test your server, you need a client—the program on the user side of the interaction. A simple program for
this sort of thing is telnet (which basically lets you connect to any socket server). In UNIX, you probably
have this program available on the command line.

$ telnet some.host.name 5005

The preceding command connects to the machine some.host.name on port 5005. To connect to the same
machine on which you’re running the telnet command, simply use the machine name localhost. (You
might want to supply an escape character through the -e switch to make sure you can quit telnet easily. See
the telnet documentation for details.)

In Windows, you can use a terminal emulator with telnet functionality, such as PuTTY (software and
more information available at http://www.chiark.greenend.org.uk/~sgtatham/putty). However, if you
are installing new software, you might as well get a client program tailored to chatting. MUD (or MUSH
or MOO or some other related acronym) clients1 are quite suitable for this sort of thing. One option is
TinyFugue (software and more information available at http://tinyfugue.sf.net). It is mainly designed
for use in UNIX. (Several clients are available for Windows as well; just do a web search for “mud client” or
something similar.) It’s all a bit “old-school,” but that’s just part of the charm.

1MUD stands for Multi-User Dungeon/Domain/Dimension. MUSH stands for Multi-User Shared Hallucination. MOO
means MUD, object-oriented.

http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://www.chiark.greenend.org.uk/~sgtatham/putty)
http://tinyfugue.sf.net/

Chapter 24 ■ Project 5: A Virtual Tea Party

411

First Implementation
Let’s break things down a bit. We need to create two main classes: one representing the chat server and one
representing each of the chat sessions (the connected users).

The ChatServer Class
To create the basic ChatServer, you subclass the dispatcher class from asyncore. The dispatcher is
basically just a socket object, but with some extra event-handling features, which you’ll be using in a minute.
See Listing 24-1 for a basic chat server program (that does very little).

Listing 24-1.  A Minimal Server Program

from asyncore import dispatcher
import asyncore

class ChatServer(dispatcher): pass

s = ChatServer()
asyncore.loop()

If you run this program, nothing happens. To make the server do anything interesting, you should call its
create_socket method to create a socket and its bind and listen methods to bind the socket to a specific
port number and to tell it to listen for incoming connections. (That is what servers do, after all.) In addition,
you’ll override the handle_accept event-handling method to actually do something when the server accepts
a client connection. The resulting program is shown in Listing 24-2.

Listing 24-2.  A Server That Accepts Connections

from asyncore import dispatcher
import socket, asyncore

class ChatServer(dispatcher):

 def handle_accept(self):
 conn, addr = self.accept()
 print('Connection attempt from', addr[0])

s = ChatServer()
s.create_socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 5005))
s.listen(5)
asyncore.loop()

The handle_accept method calls self.accept, which lets the client connect. This returns a connection
(a socket that is specific for this client) and an address (information about which machine is connecting).
Instead of doing anything useful with this connection, the handle_accept method simply prints that a
connection attempt was made. addr[0] is the IP address of the client.

The server initialization calls create_socket with two arguments that specify the type of socket you
want. You could use different types, but those shown here are what you usually want. The call to the bind
method simply binds the server to a specific address (host name and port). The host name is empty
(an empty string, essentially meaning localhost, or, more technically, “all interfaces on this machine”),

Chapter 24 ■ Project 5: A Virtual Tea Party

412

and the port number is 5005. The call to listen tells the server to listen for connections; it also specifies a
backlog of five connections. The final call to asyncore.loop starts the server’s listening loop as before.

This server actually works. Try to run it and then connect to it with your client. The client should
immediately be disconnected, and the server should print out the following:

Connection attempt from 127.0.0.1

The IP address will be different if you don’t connect from the same machine as your server. To stop the
server, simply use a keyboard interrupt: Ctrl+C in UNIX or Ctrl+Break in Windows.

Shutting down the server with a keyboard interrupt results in a stack trace. To avoid that, you can
wrap the loop in a try/except statement. With some other cleanups, the basic server ends up as shown in
Listing 24-3.

Listing 24-3.  The Basic Server with Some Cleanups

from asyncore import dispatcher
import socket, asyncore

PORT = 5005

class ChatServer(dispatcher):

 def __init__(self, port):
 dispatcher.__init__(self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)

 def handle_accept(self):
 conn, addr = self.accept()
 print('Connection attempt from', addr[0])

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: pass

The added call to set_reuse_addr lets you reuse the same address (specifically, the port number) even if the
server isn’t shut down properly. (Without this call, you may need to wait for a while before the server can be
started again, or change the port number each time the server crashes, because your program may not be
able to properly notify your operating system that it’s finished with the port.)

The ChatSession Class
The basic ChatServer isn’t very useful. Instead of ignoring the connection attempts, a new dispatcher
object should be created for each connection. However, these objects will behave differently from the
one used as the main server. They won’t be listening on a port for incoming connections; they already are
connected to a client. Their main task is collecting data (text) coming from the client and responding to it.
You could implement this functionality yourself by subclassing dispatcher and overriding various methods,
but, luckily, there is a module that already does most of the work: asynchat.

Chapter 24 ■ Project 5: A Virtual Tea Party

413

Despite the name, asynchat isn’t specifically designed for the type of streaming (continuous) chat
application that we’re working on. (The chat in the name refers to “chat-style” or command-response
protocols.) The good thing about the async_chat class (found in the asynchat module) is that it hides the
most basic socket reading and writing operations, which can be a bit difficult to get right. All that’s needed
to make it work is to override two methods: collect_incoming_data and found_terminator. The former
is called each time a bit of text has been read from the socket, and the latter is called when a terminator is
read. The terminator (in this case) is just a line break. (You’ll need to tell the async_chat object about that by
calling set_terminator as part of the initialization.)

An updated program, now with a ChatSession class, is shown in Listing 24-4.

Listing 24-4.  Server Program with ChatSession Class

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005

class ChatSession(async_chat):

 def __init__(self, sock):
 async_chat. init (self, sock)
 self.set_terminator("\r\n")
 self.data = []

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 # Do something with the line...
 print(line)

class ChatServer(dispatcher):

 def __init__(self, port): dispatcher. init (self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.sessions = []

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(conn))

if __name__ == '__main__':
 s = ChatServer(PORT)
 try: asyncore.loop()
 except KeyboardInterrupt: print()

Chapter 24 ■ Project 5: A Virtual Tea Party

414

Several things are worth noting in this new version.

•	 The set_terminator method is used to set the line terminator to "\r\n", which is
the commonly used line terminator in network protocols.

•	 The ChatSession object keeps the data it has read so far as a list of strings called
data. When more data is read, collect_incoming_data is called automatically, and
it simply appends the data to the list. Using a list of strings and later joining them
(with the join string method) is a common idiom (and historically more efficient
than incrementally adding strings). Feel free to use += with strings instead.

•	 The found_terminator method is called when a terminator is found. The current
implementation creates a line by joining the current data items and resets self.data
to an empty list. However, because you don’t have anything useful to do with the line
yet, it is simply printed.

•	 The ChatServer keeps a list of sessions.

•	 The handle_accept method of the ChatServer now creates a new ChatSession
object and appends it to the list of sessions.

Try running the server and connecting with two (or more) clients simultaneously. Every line you type in a
client should be printed in the terminal where your server is running. That means the server is now capable
of handling several simultaneous connections. Now all that’s missing is the capability for the clients to see
what the others are saying!

Putting It Together
Before the prototype can be considered a fully functional (albeit simple) chat server, one main piece of
functionality is lacking: what the users say (each line they type) should be broadcast to the others. That
functionality can be implemented by a simple for loop in the server, which loops over the list of sessions
and writes the line to each of them. To write data to an async_chat object, you use the push method.

This broadcasting behavior also adds another problem: you must make sure that connections are
removed from the list when the clients disconnect. You can do that by overriding the event-handling method
handle_close. The final version of the first prototype can be seen in Listing 24-5.

Listing 24-5.  A Simple Chat Server (simple_chat.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

class ChatSession(async_chat):
 """
 A class that takes care of a connection between the server and a single user.
 """
 def __init__(self, server, sock):
 # Standard setup tasks:
 async_chat. init (self, sock)
 self.server = server
 self.set_terminator("\r\n")

Chapter 24 ■ Project 5: A Virtual Tea Party

415

 self.data = []
 # Greet the user:
 self.push('Welcome to %s\r\n' % self.server.name)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 """
 If a terminator is found, that means that a full
 line has been read. Broadcast it to everyone.
 """
 line = ''.join(self.data)
 self.data = []
 self.server.broadcast(line)

 def handle_close(self):
 async_chat.handle_close(self)
 self.server.disconnect(self)

class ChatServer(dispatcher):
 """
 A class that receives connections and spawns individual
 sessions. It also handles broadcasts to these sessions.
 """
 def __init__(self, port, name):
 # Standard setup tasks dispatcher. init (self)
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.sessions = []

 def disconnect(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line + '\r\n')

 def handle_accept(self):
 conn, addr = self.accept()
 self.sessions.append(ChatSession(self, conn))

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print()

Chapter 24 ■ Project 5: A Virtual Tea Party

416

Second Implementation
The first prototype may be a fully functioning chat server, but its functionality is quite limited. The most
obvious limitation is that you can’t discern who is saying what. Also, it does not interpret commands
(such as say or logout), which the original specification requires. So, you need to add support for identity
(one unique name per user) and command interpretation, and you must make the behavior of each session
depend on the state it’s in (just connected, logged in, and so on)—all of this in a manner that lends itself
easily to extension.

Basic Command Interpretation
I’ll show you how to model the command interpretation on the Cmd class of the cmd module in the standard
library. (Unfortunately, you can’t use this class directly because it can be used only with sys.stdin and
sys.stdout, and you’re working with several streams.) What you need is a function or method that can
handle a single line of text (as typed by the user). It should split off the first word (the command) and call an
appropriate method based on it. For example, this line:

say Hello, world!

might result in the following call:

do_say('Hello, world!')

possibly with the session itself as an added argument (so do_say would know who did the talking).
Here is a simple implementation, with an added method to express that a command is unknown:

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard library.
 """

 def unknown(self, session, cmd):
 session.push('Unknown command: {}s\r\n'.format(cmd))

 def handle(self, session, line):
 if not line.strip(): return
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 meth = getattr(self, 'do_' + cmd, None)
 try:
 meth(session, line)
 except TypeError:
 self.unknown(session, cmd)

The use of getattr in this class is similar to that in the markup project in Chapter 20. With the basic
command handling out of the way, you need to define some actual commands. And which commands are
available (and what they do) should depend on the current state of the session. How do you represent that
state?

http://dx.doi.org/10.1007/978-1-4842-0028-5_20

Chapter 24 ■ Project 5: A Virtual Tea Party

417

Rooms
Each state can be represented by a custom command handler. This is easily combined with the standard
notion of chat rooms (or locations in a MUD). Each room is a CommandHandler with its own specialized
commands. In addition, it should keep track of which users (sessions) are currently inside it. Here is a
generic superclass for all your rooms:

class EndSession(Exception): pass

class Room(CommandHandler):
 """
 A generic environment which may contain one or more users (sessions).
 It takes care of basic command handling and broadcasting.
 """

 def __init__(self, server):
 self.server = server
 self.sessions = []

 def add(self, session):
 self.sessions.append(session)

 def remove(self, session):
 self.sessions.remove(session)

 def broadcast(self, line):
 for session in self.sessions:
 session.push(line)

 def do_logout(self, session, line):
 raise EndSession

In addition to the basic add and remove methods, a broadcast method simply calls push on all of the users
(sessions) in the room. There is also a single command defined—logout (in the form of the do_logout
method). It raises an exception (EndSession), which is dealt with at a higher level of the processing
(in found_terminator).

Login and Logout Rooms
In addition to representing normal chat rooms (this project includes only one such chat room), the Room
subclasses can represent other states, which was indeed the intention. For example, when a user connects
to the server, he is put in a dedicated LoginRoom (with no other users in it). The LoginRoom prints a welcome
message when the user enters (in the add method). It also overrides the unknown method to tell the user
to log in; the only command it responds to is the login command, which checks whether the name is
acceptable (not an empty string and not already used by another user).

The LogoutRoom is much simpler. Its only job is to delete the user’s name from the server (which has a
dictionary called users where the sessions are stored). If the name isn’t there (because the user never logged
in), the resulting KeyError is ignored.

For the source code of these two classes, see Listing 24-6 later in this chapter.

Chapter 24 ■ Project 5: A Virtual Tea Party

418

■■ Note E ven though the server’s users dictionary keeps references to all the sessions, no session is ever
retrieved from it. The users dictionary is used only to keep track of which names are in use. However, instead
of using some arbitrary value (such as True), I decided to let each user name refer to the corresponding
session. Even though there is no immediate use for it, it may be useful in some later version of the program (for
example, if one user wants to send a message privately to another). An alternative would have been to simply
keep a set or list of sessions.

The Main Chat Room
The main chat room also overrides the add and remove methods. In add, it broadcasts a message about the
user who is entering, and it adds the user’s name to the users dictionary in the server. The remove method
broadcasts a message about the user who is leaving.

In addition to these methods, the ChatRoom class implements three commands.

•	 The say command (implemented by do_say) broadcasts a single line, prefixed with
the name of the user who spoke.

•	 The look command (implemented by do_look) tells the user which users are
currently in the room.

•	 The who command (implemented by do_who) tells the user which users are currently
logged in. In this simple server, look and who are equivalent, but if you extend it to
contain more than one room, their functionality will differ.

For the source code, see Listing 24-6 later in this chapter.

The New Server
I’ve now described most of the functionality. The main additions to ChatSession and ChatServer are as
follows:

•	 ChatSession has a method called enter, which is used to enter a new room.

•	 The ChatSession constructor uses LoginRoom.

•	 The handle_close method uses LogoutRoom.

•	 The ChatServer constructor adds the dictionary users and the ChatRoom called
main_room to its attributes.

Notice also how handle_accept no longer adds the new ChatSession to a list of sessions because the
sessions are now managed by the rooms.

■■ Note  In general, if you simply instantiate an object, like the ChatSession in handle_accept, without
binding a name to it or adding it to a container, it will be lost and may be garbage-collected (which means that
it will disappear completely). Because all dispatchers are handled (referenced) by asyncore (and async_chat is
a subclass of dispatcher), this is not a problem here.

Chapter 24 ■ Project 5: A Virtual Tea Party

419

The final version of the chat server is shown in Listing 24-6. For your convenience, I’ve listed the available
commands in Table 24-1.

Listing 24-6.  A Slightly More Complicated Chat Server (chatserver.py)

from asyncore import dispatcher
from asynchat import async_chat
import socket, asyncore

PORT = 5005
NAME = 'TestChat'

class EndSession(Exception): pass

class CommandHandler:
 """
 Simple command handler similar to cmd.Cmd from the standard library.
 """

 def unknown(self, session, cmd):
 'Respond to an unknown command'
 session.push('Unknown command: {}s\r\n'.format(cmd))

 def handle(self, session, line):
 'Handle a received line from a given session'
 if not line.strip(): return
 # Split off the command:
 parts = line.split(' ', 1)
 cmd = parts[0]
 try: line = parts[1].strip()
 except IndexError: line = ''
 # Try to find a handler:
 meth = getattr(self, 'do_' + cmd, None)
 try:
 # Assume it's callable:
 meth(session, line)
 except TypeError:
 # If it isn't, respond to the unknown command:
 self.unknown(session, cmd)

class Room(CommandHandler):
 """
 A generic environment that may contain one or more users (sessions).
 It takes care of basic command handling and broadcasting.
 """

 def __init__(self, server):
 self.server = server
 self.sessions = []

Chapter 24 ■ Project 5: A Virtual Tea Party

420

 def add(self, session):
 'A session (user) has entered the room'
 self.sessions.append(session)

 def remove(self, session):
 'A session (user) has left the room'
 self.sessions.remove(session)

 def broadcast(self, line):
 'Send a line to all sessions in the room'
 for session in self.sessions:
 session.push(line)

 def do_logout(self, session, line):
 'Respond to the logout command'
 raise EndSession

class LoginRoom(Room):
 """
 A room meant for a single person who has just connected.
 """

 def add(self, session):
 Room.add(self, session)
 # When a user enters, greet him/her:
 self.broadcast('Welcome to {}\r\n'.format(self.server.name))

 def unknown(self, session, cmd):
 # All unknown commands (anything except login or logout)
 # results in a prodding:
 session.push('Please log in\nUse "login <nick>"\r\n')

 def do_login(self, session, line):
 name = line.strip()
 # Make sure the user has entered a name:
 if not name:
 session.push('Please enter a name\r\n')
 # Make sure that the name isn't in use:
 elif name in self.server.users:
 session.push('The name "{}" is taken.\r\n'.format(name))
 session.push('Please try again.\r\n')
 else:
 # The name is OK, so it is stored in the session, and
 # the user is moved into the main room. session.name = name
 session.enter(self.server.main_room)

class ChatRoom(Room):
 """
 A room meant for multiple users who can chat with the others in the room.
 """

Chapter 24 ■ Project 5: A Virtual Tea Party

421

 def add(self, session):
 # Notify everyone that a new user has entered:
 self.broadcast(session.name + ' has entered the room.\r\n')
 self.server.users[session.name] = session
 super().add(session)

 def remove(self, session):
 Room.remove(self, session)
 # Notify everyone that a user has left:
 self.broadcast(session.name + ' has left the room.\r\n')

 def do_say(self, session, line):
 self.broadcast(session.name + ': ' + line + '\r\n')

 def do_look(self, session, line):
 'Handles the look command, used to see who is in a room'
 session.push('The following are in this room:\r\n')
 for other in self.sessions:
 session.push(other.name + '\r\n')

 def do_who(self, session, line):
 'Handles the who command, used to see who is logged in'
 session.push('The following are logged in:\r\n')
 for name in self.server.users:
 session.push(name + '\r\n')

class LogoutRoom(Room):
 """
 A simple room for a single user. Its sole purpose is to remove the
 user's name from the server.
 """

 def add(self, session):
 # When a session (user) enters the LogoutRoom it is deleted
 try: del self.server.users[session.name]
 except KeyError: pass

class ChatSession(async_chat):
 """
 A single session, which takes care of the communication with a single user.
 """

 def __init__(self, server, sock):
 super().__init__(sock)
 self.server = server
 self.set_terminator("\r\n")
 self.data = []
 self.name = None
 # All sessions begin in a separate LoginRoom:
 self.enter(LoginRoom(server))

Chapter 24 ■ Project 5: A Virtual Tea Party

422

 def enter(self, room):
 # Remove self from current room and add self to
 # next room...
 try: cur = self.room
 except AttributeError: pass
 else: cur.remove(self)
 self.room = room
 room.add(self)

 def collect_incoming_data(self, data):
 self.data.append(data)

 def found_terminator(self):
 line = ''.join(self.data)
 self.data = []
 try: self.room.handle(self, line)
 except EndSession: self.handle_close()

 def handle_close(self):
 async_chat.handle_close(self)
 self.enter(LogoutRoom(self.server))

class ChatServer(dispatcher):
 """
 A chat server with a single room.
 """

 def __init__(self, port, name):
 super().__init__()
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.set_reuse_addr()
 self.bind(('', port))
 self.listen(5)
 self.name = name
 self.users = {}
 self.main_room = ChatRoom(self)

 def handle_accept(self):
 conn, addr = self.accept()
 ChatSession(self, conn)

if __name__ == '__main__':
 s = ChatServer(PORT, NAME)
 try: asyncore.loop()
 except KeyboardInterrupt: print()

Chapter 24 ■ Project 5: A Virtual Tea Party

423

An example of a chat session is shown in Figure 24-1. The server in that example was started with this
command:

python chatserver.py

and the user dilbert connected to the server using this command:

telnet localhost 5005

Figure 24-1.  A sample chat session

Table 24-1.  Commands Available in the Chat Server

Command Available In Description

login name Login room Used to log into the server

logout All rooms Used to log out of the server

say statement Chat room(s) Used to say something

look Chat room(s) Used to find out who is in the same room

who Chat room(s) Used to find out who is logged on to the server

Chapter 24 ■ Project 5: A Virtual Tea Party

424

Further Exploration
You can do a lot to extend and enhance the basic server presented in this chapter.

•	 You could make a version with multiple chat rooms, and you could extend the
command set to make it behave in any way you want.

•	 You might want to make the program recognize only certain commands (such as
login or logout) and treat all other text entered as general chatting, thereby avoiding
the need for a say command.

•	 You could prefix all commands with a special character (for example, a slash, giving
commands like /login and /logout) and treat everything that doesn’t start with the
specified character as general chatting.

•	 You might want to create your own GUI client, but that’s a bit trickier than it might
seem. The GUI toolkit has one event loop, and the communication with the server
may require another. To make them cooperate, you may need to use threading.
(For an example of how this can be done in simple cases where the various threads
don’t directly access each other’s data, see Chapter 28.)

What Now?
Now you have your very own chat server. In the next project, we’ll tackle a different type of network
programming: CGI, the mechanism underlying many web applications (as discussed in Chapter 15). The
specific application of this technology in the next project is remote editing, which enables several users to
collaborate on developing the same document. You may even use it to edit your own web pages remotely.

http://dx.doi.org/10.1007/978-1-4842-0028-5_28
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

425© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_25

CHAPTER 25

Project 6: Remote Editing with CGI

This chapter’s project uses CGI, which is discussed in more detail in Chapter 15. The specific application is
remote editing—editing a document on another machine via the Web. This can be useful in collaboration
systems (groupware), for example, where several people may be working on the same document. It can also
be useful for updating your web pages.

What’s the Problem?
You have a document stored on one machine and want to be able to edit it from another machine via the
Web. This enables you to have a shared document edited by several collaborating authors. You won’t need
to use FTP or similar file-transfer technologies, and you won’t need to worry about synchronizing multiple
copies. To edit the file, all you need is a web browser.

■■ Note  This sort of remote editing is one of the core mechanisms of wikis (see, for example,
http://en.wikipedia.org/wiki/Wiki).

Specifically, the system should meet the following requirements:

•	 It should be able to display the document as a normal web page.

•	 It should be able to display the document in a text area in a web form.

•	 You should be able to save the text from the form.

•	 The program should protect the document with a password.

•	 The program should be easily extensible to support editing more than one
document. As you’ll see, all of this is quite easy to do with the standard Python
library module cgi and some plain Python coding. However, the techniques used
in this application can be used for creating web interfaces to all of your Python
programs, so it’s pretty useful.

Useful Tools
The main tool when writing CGI programs is, as discussed in Chapter 15, the cgi module, along with the
cgitb module for debugging. See Chapter 15 for more information.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://en.wikipedia.org/wiki/Wiki
http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 25 ■ Project 6: Remote Editing with CGI

426

Preparations
The steps needed for making your CGI script accessible through the Web are described in detail in
Chapter 15 in the section “Dynamic Web Pages with CGI.” Just follow those steps, and you should be fine.

First Implementation
The first implementation is based on the basic structure of the greeting script shown in Listing 15-7
(Chapter 15). All that’s needed for the first prototype is some file handling.

For the script to be useful, it must store the edited text between invocations. Also, the form should be
made a bit bigger than in the greeting script (simple3.cgi from Listing 15-7 in Chapter 15), and the text
field should be changed into a text area. You should also use the POST CGI method instead of the default GET
method. (Using POST is normally the thing to do if you are submitting large amounts of data.)

The general logic of the program is as follows:

	 1.	 Get the CGI parameter text with the current value of the data file as the default.

	 2.	 Save the text to the data file.

	 3.	 Print out the form, with the text in the textarea.

In order for the script to be allowed to write to your data file, you must first create such a file
(for example, simple_edit.dat). It can be empty or perhaps contain the initial document (a plain-text file,
possibly containing some form of markup such as XML or HTML). Then you must set the permissions so
that it is universally writable, as described in Chapter 15. The resulting code is shown in Listing 25-1.

Listing 25-1.  A Simple Web Editor (simple_edit.cgi)

#!/usr/bin/env python

import cgi
form = cgi.FieldStorage()

text = form.getvalue('text', open('simple_edit.dat').read())
f = open('simple_edit.dat', 'w')
f.write(text)
f.close()

print("""Content-type: text/html

<html>
 <head>
 <title>A Simple Editor</title>
 </head>
 <body>
 <form action='simple_edit.cgi' method='POST'>
 <textarea rows='10' cols='20' name='text'>{}</textarea>

 <input type='submit' />
 </form>
 </body>
</html>
""".format(text))

http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 25 ■ Project 6: Remote Editing with CGI

427

When accessed through a web server, the CGI script checks for an input value called text. If such a value
is submitted, the text is written to the file simple_edit.dat. The default value is the file’s current contents.
Finally, a web page (containing the field for editing and submitting the text) is displayed, as shown in
Figure 25-1.

Second Implementation
Now that you have the first prototype on the road, what’s missing? The system should be able to edit more
than one file, and it should use password protection. (Because the document can be viewed by opening it
directly in a browser, you won’t be paying much attention to the viewing part of the system.)

The main difference from the first prototype is that you’ll split it into two separate CGI scripts (one for
each “action” your system should be able to perform). The files of the new prototypes are as follows:

index.html: A plain web page with a form where you can enter a file name.
It also has an Open button, which triggers edit.cgi.

edit.cgi: A script that displays a given file in a text area. It has a text field for
password entry and a Save button, which triggers save.cgi.

save.cgi: A script that saves the text it receives to a given file and displays a
simple message (for example, “The file has been saved”). This script should also
take care of the password checking.

Let’s tackle these one by one.

Figure 25-1.  The simple_edit.cgi script in action

Chapter 25 ■ Project 6: Remote Editing with CGI

428

Creating the File Name Form
index.html is an HTML file that contains the form used to enter a file name.

<html>
 <head>
 <title>File Editor</title>
 </head>
 <body>
 <form action='edit.cgi' method='POST'>
 File name:

 <input type='text' name='filename' />
 <input type='submit' value='Open' />
 </body>
</html>

Notice how the text field is named filename. That ensures its contents will be supplied as the CGI
parameter filename to the edit.cgi script (which is the action attribute of the form tag). If you open this
file in a browser, enter a file name in the text field, and click Open, the edit.cgi script will be run.

Writing the Editor Script
The page displayed by the edit.cgi script should include a text area containing the current text of the file
you’re editing and a text field for entering a password. The only input needed is the file name, which the
script receives from the form in index.html. Note, however, that it is possible to open the edit.cgi script
directly, without submitting the form in index.html. In that case, you have no guarantee that the filename
field of cgi.FieldStorage is set. So you need to add a check to ensure that there is a file name. If there is, the
file will be opened from a directory that contains the files that may be edited. Let’s call the directory data.
(You will, of course, have to create this directory.)

■■ Caution N ote that by supplying a file name that contains path elements such as .. (two dots), it may
be possible to access files outside this directory. To make sure that the files accessed are within the given
directory, you should perform some extra checking, such as listing all the files in the directory (using the glob
module, for example) and checking that the supplied file name is one of the candidate files (making sure you
use full, absolute path names all around). See the section “Validating File Names” in Chapter 27 for another
approach.

The code, then, becomes something like Listing 25-2.

Listing 25-2.  The Editor Script (edit.cgi)

#!/usr/bin/env python

print('Content-type: text/html\n')

from os.path import join, abspath
import cgi, sys

http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 25 ■ Project 6: Remote Editing with CGI

429

BASE_DIR = abspath('data')

form = cgi.FieldStorage()
filename = form.getvalue('filename')
if not filename:
 print('Please enter a file name')
 sys.exit()
text = open(join(BASE_DIR, filename)).read()

print("""
<html>
 <head>
 <title>Editing...</title>
 </head>
 <body>
 <form action='save.cgi' method='POST'>
 File: {}

 <input type='hidden' value='{}' name='filename' />
 Password:

 <input name='password' type='password' />

 Text:

 <textarea name='text' cols='40' rows='20'>{}</textarea>

 <input type='submit' value='Save' />
 </form>
 </body>
</html>
""".format(filename, filename, text))

Note that the abspath function has been used to get the absolute path of the data directory. Also note that
the file name has been stored in a hidden form element so that it will be relayed to the next script
(save.cgi) without giving the user an opportunity to change it. (You have no guarantees of that, of course,
because users may write their own forms, put them on another machine, and have those forms call your CGI
scripts with custom values.)

For password handling, the sample code uses an input element of type password rather than text,
which means that the characters entered will be displayed as asterisks.

■■ Note  This script is based on the assumption that the file name given refers to an existing file. Feel free to
extend it so that it can handle other cases as well.

Writing the Save Script
The script that performs the saving is the last component of this simple system. It receives a file name, a
password, and some text. It checks that the password is correct, and if it is, the program stores the text in the
file with the given file name. (The file should have its permissions set properly; see the discussion of setting
file permissions in Chapter 15.)

Just for fun, we’ll use the sha module in the password handling. The Secure Hash Algorithm (SHA) is a
way of extracting an essentially meaningless string of seemingly random data (a digest) from an input string.
The idea behind the algorithm is that it is almost impossible to construct a string that has a given digest, so

http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 25 ■ Project 6: Remote Editing with CGI

430

if you know the digest of a password (for example), there is no (easy) way you can reconstruct the password
or invent one that will reproduce the digest. This means that you can safely compare the digest of a supplied
password with a stored digest (of the correct password) instead of comparing the passwords themselves. By
using this approach, you don’t need to store the password itself in the source code, and someone reading the
code would be none the wiser about what the password actually was.

■■ Caution A s I said, this “security” feature is mainly for fun. Unless you are using a secure connection
with SSL or some similar technology (which is beyond the scope of this project), it is still possible to pick up
the password being submitted over the network. Also, the SHA1 algorithm used here is no longer considered
particularly secure.

Here is an example of how you can use sha:

>>> from hashlib import sha1
>>> sha1(b'foobar').hexdigest()
'8843d7f92416211de9ebb963ff4ce28125932878'
>>> sha1(b'foobaz').hexdigest()
'21eb6533733a5e4763acacd1d45a60c2e0e404e1'

As you can see, a small change in the password gives you a completely different digest. You can see the code
for save.cgi in Listing 25-3.

Listing 25-3.  The Saving Script (save.cgi)

#!/usr/bin/env python

print('Content-type: text/html\n')

from os.path import join, abspath
from hashlib import sha1
import cgi, sys

BASE_DIR = abspath('data')

form = cgi.FieldStorage()

text = form.getvalue('text')
filename = form.getvalue('filename')
password = form.getvalue('password')

if not (filename and text and password):
 print('Invalid parameters.')
 sys.exit()

if sha1(password.encode()).hexdigest() != '8843d7f92416211de9ebb963ff4ce28125932878':
 print('Invalid password')
 sys.exit()

Chapter 25 ■ Project 6: Remote Editing with CGI

431

f = open(join(BASE_DIR,filename), 'w')
f.write(text)
f.close()

print('The file has been saved.')

Running the Editor
Follow these steps to use the editor:

	 1.	 Open the page index.html in a web browser. Be sure to open it through a web
server (by using a URL of the form http://www.someserver.com/index.html)
and not as a local file. The result is shown in Figure 25-2.

	 2.	 Enter a file name of a file that your CGI editor is permitted to modify and then
click Open. Your browser should then contain the output of the edit.cgi script,
as shown in Figure 25-3.

Figure 25-2.  The opening page of the CGI editor

http://www.someserver.com/index.html

Chapter 25 ■ Project 6: Remote Editing with CGI

432

	 3.	 Edit the file to taste, enter the password (one you’ve set yourself, or the one used
in the example, which is foobar), and click Save. Your browser should then
contain the output of the save.cgi script, which is simply the message “The file
has been saved.”

	 4.	 If you want to verify that the file has been modified, repeat the process of opening
the file (steps 1 and 2).

Further Exploration
With the techniques shown in this project, you can develop all kinds of web systems. Some possible
additions to the existing system are as follows:

•	 Add version control. Save old copies of the edited file so you can “undo” your
changes.

•	 Add support for user names so you know who changed what.

•	 Add file locking (for example, with the fcntl module) so two users can’t edit the file
at the same time.

•	 Add a view.cgi script that automatically adds markup to the files (like the one in
Chapter 20).

Figure 25-3.  The editing page of the CGI editor

http://dx.doi.org/10.1007/978-1-4842-0028-5_20

Chapter 25 ■ Project 6: Remote Editing with CGI

433

•	 Make the scripts more robust by checking their input more thoroughly and adding
more user-friendly error messages.

•	 Avoid printing a confirmation message like “The file has been saved.” You can either
add some more useful output or redirect the user to another page/script. Redirection
can be done with the Location header, which works like Content-type. Just add
Location: followed by a space and a URL to the header section of the output (before
the first empty line).

In addition to expanding the capabilities of this CGI system, you might want to check out some more
complex web environments for Python (as discussed in Chapter 15).

What Now?
Now you’ve tried your hand at writing CGI scripts. In the next project, you expand on that by using a SQL
database for storage. With that powerful combination, you’ll implement a fully functional web-based
bulletin board.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15

435© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_26

CHAPTER 26

Project 7: Your Own Bulletin Board

Many kinds of software enable you to communicate with other people over the Internet. You’ve seen a few
already (for example, the Usenet groups in Chapter 23 and the chat server in Chapter 24). In this chapter, you
will implement another such system: a web-based discussion forum. While the functionality is a far cry from
complex social media platforms, it does implement the basics needed for comment systems, for example.

What’s the Problem?
In this project, you create a simple system for posting and responding to messages via the Web. This has
utility in itself, as a discussion forum. The system developed in this chapter is quite simple, but the basic
functionality is there, and it should be capable of handling quite a large number of postings.

However, the material covered in this chapter has uses beyond developing stand-alone discussion
forums. It could be used to implement a more general system for collaboration, for example, or an
issue-tracking system, a blog with commenting functionality, or something completely different. The
combination of CGI (or similar technologies) and a solid database (in this case, a SQL database) is quite
powerful and versatile.

■■ Tip  Even though it’s fun and educational to write your own code, in many cases it’s more cost-effective to
search for existing solution. In the case of discussion forums and the like, chances are that you can find quite a
few well-developed systems freely available. Also, most web application frameworks (discussed in Chapter 15)
have built-in support for this sort of functionality.

Specifically, the final system should meet the following requirements:

•	 It should display the subjects of all current messages.

•	 It should support message threading (displaying replies indented under the message
they reply to).

•	 You should be able to view existing messages.

•	 You should be able to reply to existing messages.

In addition to these functional requirements, it would be nice if the system were reasonably stable, could
handle a large number of messages, and avoided such problems as two users writing to the same file at
the same time. The desired robustness can be achieved by using a database server of some sort, instead of
writing the file-handling code yourself.

http://dx.doi.org/10.1007/978-1-4842-0028-5_23
http://dx.doi.org/10.1007/978-1-4842-0028-5_24
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 26 ■ Project 7: Your Own Bulletin Board

436

Useful Tools
In addition to the CGI stuff from Chapter 15, you’ll need a SQL database, as discussed in Chapter 13. Either
you could use the stand-alone database SQLite, which is used in that chapter, or you could use some other
system, such as either of the following two excellent, freely available databases:

•	 PostgreSQL (http://www.postgresql.org)

•	 MySQL (http://www.mysql.org)

In this chapter, I use PostgreSQL for the examples, but the code should work with most SQL databases
(including MySQL or SQLite) with few edits.

Before moving on, you should make sure that you have access to a SQL database server (or a stand-
alone SQL database, such as SQLite) and check its documentation for instructions on how to manage it.

In addition to the database server itself, you’ll need a Python module that can interface with the server
(and hide the details from you). Most such modules support the Python DB API, which is discussed in more
detail in Chapter 13. In this chapter, I use psycopg (http://initd.org), a robust front end for PostgreSQL.
If you’re using MySQL, the MySQLdb module (http://sourceforge.net/projects/mysql-python) is a good
choice.

After you have installed your database module, you should be able to import it (for example, with
import psycopg or import MySQLdb) without raising any exceptions.

Preparations
Before your program can start using your database, you must actually create the database. That is done using
SQL (see Chapter 13 for some pointers).

The database structure is intimately linked with the problem and can be a bit tricky to change once
you’ve created it and populated it with data (messages). Let’s keep it simple.

You’ll have only one table, which will contain one row for each message. Each message will have a
unique ID (an integer), a subject, a sender (or poster), and some text (the body).

In addition, because you want to be able to display the messages hierarchically (threading), each
message should store a reference to the message it is a reply to. The resulting CREATE TABLE SQL command
is shown in Listing 26-1.

Listing 26-1.  Creating the Database in PostgreSQL

CREATE TABLE messages (
 id SERIAL PRIMARY KEY,
 subject TEXT NOT NULL,
 sender TEXT NOT NULL,
 reply_to INTEGER REFERENCES messages,
 text TEXT NOT NULL
);

Note that this command uses some PostgreSQL-specific features (SERIAL, which ensures that each message
automatically receives a unique ID; the TEXT data type; and REFERENCES, which makes sure that reply_to
contains a valid message ID). A more MySQL-friendly version is shown in Listing 26-2.

http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_13
http://www.postgresql.org/
http://www.mysql.org/
http://dx.doi.org/10.1007/978-1-4842-0028-5_13
http://initd.org/
http://sourceforge.net/projects/mysql-python)
http://dx.doi.org/10.1007/978-1-4842-0028-5_13

Chapter 26 ■ Project 7: Your Own Bulletin Board

437

Listing 26-2.  Creating the Database in MySQL

CREATE TABLE messages (
 id INT NOT NULL AUTO_INCREMENT,
 subject VARCHAR(100) NOT NULL,
 sender VARCHAR(15) NOT NULL,
 reply_to INT,
 text MEDIUMTEXT NOT NULL, PRIMARY KEY(id)
);

Finally, for those of you using SQLite, there’s a schema in Listing 26-3.

Listing 26-3.  Creating the Database in SQLite

create table messages (
 id integer primary key autoincrement,
 subject text not null,
 sender text not null,
 reply_to int,
 text text not null
);

I’ve kept these code snippets simple (a SQL guru would certainly find ways to improve them) because the
focus of this chapter is, after all, the Python code. The SQL statements create a new table with the following
five fields (columns):

id: Used to identify the individual messages. Each message automatically
receives a unique ID by the database manager, so you don’t need to worry about
assigning those from your Python code.

subject: A string that contains the subject of the message.

sender: A string that contains the sender’s name or email address or something
like that.

reply_to: If the message is a reply to another message, this field contains the id
of the other message. (Otherwise, the field won’t contain anything.)

text: A string that contains the body of the message.

When you’ve created this database and set the permissions on it so that your web server is allowed to read its
contents and insert new rows, you’re ready to start coding the CGI.

First Implementation
In this project, the first prototype is very limited. It’s a single script that uses the database functionality so
that you can get a feel for how it works. Once you have that pegged, writing the other necessary scripts won’t
be very hard. In many ways, this is just a short reminder of the material covered in Chapter 13.

The CGI part of the code is very similar to that in Chapter 25. If you haven’t read that chapter yet,
you might want to take a look at it. You should also be sure to review the section “CGI Security Risks” in
Chapter 15.

http://dx.doi.org/10.1007/978-1-4842-0028-5_13
http://dx.doi.org/10.1007/978-1-4842-0028-5_25
http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 26 ■ Project 7: Your Own Bulletin Board

438

■■ Caution  In the CGI scripts in this chapter, I’ve imported and enabled the cgitb module. This is very useful
to uncover flaws in your code, but you should probably remove the call to cgitb.enable before deploying the
software—you probably wouldn’t want an ordinary user to face a full cgitb traceback.

The first thing you need to know is how the Python DB API works. If you haven’t read Chapter 13, you
probably should at least skim through it now. If you would rather just press on, here is the core functionality
again (replace db with the name of your database module—for example, psycopg or MySQLdb):

conn = db.connect('user=foo password=bar dbname=baz'): Connects to the
database named baz as user foo with the password bar and assigns the returned
connection object to conn. (Note that the parameter to connect is a string.)

■■ Caution  In this project, I assume that you have a dedicated machine on which the database and web
server run. The given user (foo) should be allowed to connect only from that machine to avoid unwanted
access. The use of a password is thus not necessary, but your database might require you to set one up. If you
want to make the forum public, you should make sure you learn more about proper security measures, as this
example project is not secure!

curs = conn.cursor(): Gets a cursor object from the connection object. The
cursor is used to actually execute SQL statements and fetch the results.

conn.commit(): Commits the changes caused by the SQL statements since the
last commit.

conn.close(): Closes the connection.

curs.execute(sql_string): Executes a SQL statement.

curs.fetchone(): Fetches one result row as a sequence—for example, a tuple.

curs.dictfetchone(): Fetches one result row as a dictionary. (This is not part of
the standard and therefore not available in all modules.)

curs.fetchall(): Fetches all result rows as a sequence of sequences—for
example, a list of tuples.

curs.dictfetchall(): Fetches all result rows as a sequence (for example, a list)
of dictionaries. (This is not part of the standard and therefore not available in all
modules.)

Here is a simple test (assuming psycopg)—retrieving all the messages in the database (which is currently
empty, so you won’t get any):

>>> import psycopg2
>>> conn = psycopg2.connect('user=foo password=bar dbname=baz')
>>> curs = conn.cursor()
>>> curs.execute('SELECT * FROM messages')
>>> curs.fetchall()
[]

http://dx.doi.org/10.1007/978-1-4842-0028-5_13

Chapter 26 ■ Project 7: Your Own Bulletin Board

439

Because you haven’t implemented the web interface yet, you must enter messages manually if you want to
test the database. Either you can do that through an administrative tool (such as mysql for MySQL or psql for
PostgreSQL), or you can use the Python interpreter with your database module.

Here is a useful piece of code you can use for testing purposes:

#!/usr/bin/env python
addmessage.py
import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz)
curs = conn.cursor()

reply_to = input('Reply to: ')
subject = input('Subject: ')
sender = input('Sender: ')
text = input('Text: ')

if reply_to:
 query = """
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES({}, '{}', '{}', '{}')""".format(reply_to, sender, subject, text)
else:
 query = """
 INSERT INTO messages(sender, subject, text)
 VALUES('{}', '{}', '{}')""".format(sender, subject, text)

curs.execute(query)
conn.commit()

Note that this code is a bit crude. It doesn’t keep track of IDs for you (you’ll have to make sure that what you
enter as reply_to, if anything, is a valid ID), and it doesn’t deal properly with text containing single quotes
(this can be problematic because single quotes are used as string delimiters in SQL). These issues will be
dealt with in the final system, of course.

Try to add a few messages and examine the database at the interactive Python prompt. If everything
seems okay, it’s time to write a CGI script that accesses the database.

Now that you have the database-handling code figured out and some ready-made CGI code you can
pinch from Chapter 25, writing a script for viewing the message subjects (a simple version of the “main
page” of the forum) shouldn’t be too hard. You must do the standard CGI setup (in this case, mainly printing
the Content-type string), do the standard database setup (get a connection and a cursor), execute a simple
SQL select command to get all the messages, and then retrieve the resulting rows with curs.fetchall or
curs.dictfetchall.

Listing 26-4 shows a script that does these things. The only really new stuff in the listing is the
formatting code, which is used to get the threaded look where replies are displayed below and to the right of
the messages they are replies to.

It basically works like this:

	 1.	 For each message, get the reply_to field. If it is None (not a reply), add the
message to the list of top-level messages. Otherwise, append the message to the
list of children kept in children[parent_id].

	 2.	 For each top-level message, call format. The format function prints the subject
of the message. Also, if the message has any children, it opens a blockquote
element (HTML), calls format (recursively) for each child, and ends the
blockquote element.

http://dx.doi.org/10.1007/978-1-4842-0028-5_25

Chapter 26 ■ Project 7: Your Own Bulletin Board

440

If you open the script in your web browser (see Chapter 15 for information about how to run CGI scripts),
you should see a threaded view of all the messages you’ve added (or their subjects, anyway).

For an idea of what the bulletin board looks like, see Figure 26-1 later in this chapter.

■■ Note  If you’re using SQLite, you can’t use dictfetchall, as in Listing 26-4. The line rows = curs.
dictfetchall() can be replaced with the following snippet:

names = [d[0] for d in curs.description]

rows = [dict(zip(names, row)) for row in curs.fetchall()]

Listing 26-4.  The Main Bulletin Board (simple_main.cgi)

#!/usr/bin/python

print('Content-type: text/html\n')

import cgitb; cgitb.enable()

import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz')
curs = conn.cursor()

Figure 26-1.  The main page

http://dx.doi.org/10.1007/978-1-4842-0028-5_15

Chapter 26 ■ Project 7: Your Own Bulletin Board

441

print("""
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """)

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id, []).append(row)
 def format(row):
 print(row['subject'])
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print('<blockquote>')
 for kid in kids:
 format(kid)
 print('</blockquote>')

 print('<p>')

 for row in toplevel:
 format(row)

 print("""
 </p>
 </body>
 </html>
 """)

■■ Note  If, for some reason, you can’t get the program to work, it may be that you haven’t set up your
database properly. Consult the documentation for your database to see what is needed in order to let a given
user connect and to modify the database. You may, for example, need to list the IP address of the connecting
machine explicitly.

Chapter 26 ■ Project 7: Your Own Bulletin Board

442

Second Implementation
The first implementation is quite limited in that it doesn’t even allow users to post messages. In this section,
we’ll expand on the simple system in the first prototype, which contains the basic structure for the final
version. Some measures will be added to check the supplied parameters (such as checking whether
reply_to is really a number and whether the required parameters are really supplied), but you should note
that making a system like this robust and user-friendly is a tough task. If you intend to use the system (or, I
hope, an improved version of your own), you should be prepared to work quite a bit on these issues.

But before you can even think of improving stability, you need something that works, right? So, where
do you begin? How do you structure the system?

A simple way of structuring web programs (using technologies such as CGI) is to have one script per
action performed by the user. In the case of this system, that would mean the following scripts:

main.cgi: Displays the subjects of all messages (threaded) with links to the
articles themselves.

view.cgi: Displays a single article and contains a link that will let you reply to it.

edit.cgi: Displays a single article in editable form (with text fields and text
areas, just as in Chapter 25). Its Submit button is linked to the save script.

save.cgi: Receives information about an article (from edit.cgi) and saves it by
inserting a new row into the database table.

Let’s deal with these separately.

Writing the Main Script
The main.cgi script is very similar to the simple_main.cgi script from the first prototype. The main
difference is the addition of links. Each subject will be a link to a given message (to view.cgi), and at the
bottom of the page, you’ll add a link that allows the user to post a new message (a link to edit.cgi).

Take a look at the code in Listing 26-5. The line containing the link to each article (part of the format
function) looks like this:

print('<p>{subject}</p>'.format(row))

Basically, it creates a link to view.cgi?id=someid where someid is the id of the given row. This syntax
(the question mark and key=val) is simply a way of passing parameters to a CGI script. That means if users
click this link, they are taken to view.cgi with the id parameter properly set. The “Post message” link is just
a link to edit.cgi.

Listing 26-5.  The Main Bulletin Board (main.cgi)

#!/usr/bin/python

print('Content-type: text/html\n')

import cgitb; cgitb.enable()

import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz')
curs = conn.cursor()

http://dx.doi.org/10.1007/978-1-4842-0028-5_25

Chapter 26 ■ Project 7: Your Own Bulletin Board

443

print("""
<html>
 <head>
 <title>The FooBar Bulletin Board</title>
 </head>
 <body>
 <h1>The FooBar Bulletin Board</h1>
 """)

curs.execute('SELECT * FROM messages')
rows = curs.dictfetchall()

toplevel = []
children = {}

for row in rows:
 parent_id = row['reply_to']
 if parent_id is None:
 toplevel.append(row)
 else:
 children.setdefault(parent_id, []).append(row)

def format(row):
 print('<p>{subject}</p>'.format(row))
 try: kids = children[row['id']]
 except KeyError: pass
 else:
 print('<blockquote>')
 for kid in kids:
 format(kid)
 print('</blockquote>')
 print('<p>')

for row in toplevel:
 format(row)

print("""
 </p>
 <hr />
 <p>Post message</p>
 </body>
</html>
""")

So, let’s see how view.cgi handles the id parameter.

Writing the View Script
The view.cgi script uses the supplied CGI parameter id to retrieve a single message from the database. It then
formats a simple HTML page with the resulting values. This page also contains a link back to the main page
(main.cgi) and, perhaps more interestingly, to edit.cgi, but this time with the reply_to parameter set to id to
ensure that the new message will be a reply to the current one. See Listing 26-6 for the code of view.cgi.

Chapter 26 ■ Project 7: Your Own Bulletin Board

444

Listing 26-6.  The Message Viewer (view.cgi)

#!/usr/bin/python

print('Content-type: text/html\n')

import cgitb; cgitb.enable()

import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()
id = form.getvalue('id')

print("""
<html>
 <head>
 <title>View Message</title>
 </head>
 <body>
 <h1>View Message</h1>
 """)

try: id = int(id)
except:
 print('Invalid message ID')
 sys.exit()

curs.execute('SELECT * FROM messages WHERE id = %s', (format(id),))
rows = curs.dictfetchall()

if not rows:
 print('Unknown message ID')
 sys.exit()

row = rows[0]

print("""
 <p>Subject: {subject}

 Sender: {sender}

 <pre>{text}</pre>
 </p>
 <hr />
 Back to the main page
 | Reply
 </body>
</html>
""".format(row))

Chapter 26 ■ Project 7: Your Own Bulletin Board

445

Using the splicing mechanism of the SQL package itself avoids our earlier single-quote issue—and makes
the code more secure, to boot.

■■ Caution  You should avoid inserting untrusted text directly into a string that is to be used as a SQL query,
because such code is vulnerable to so-called SQL injection attacks. Rather, use the Python DB API placeholder
mechanism, and supply an extra argument tuple to curs.execute. For more information, see, for example,
http://bobby-tables.com.

Writing the Edit Script
The edit.cgi script actually performs a dual function: it is used to edit new messages and also to edit
replies. The difference isn’t all that great: if a reply_to is supplied in the CGI request, it is kept in a hidden
input in the edit form. Hidden inputs are used to temporarily store information in a web form. They don’t
show up to the user as text areas and the like do, but their value is still passed to the CGI script that is the
action of the form.

Also, the subject is set to "Re: parentsubject" by default (unless the subject already begins with
"Re:"—you don’t want to keep adding those). Here is the code snippet that takes care of these details:

subject = ''
if reply_to is not None:
 print('<input type="hidden" name="reply_to" value="{}"/>'.format(reply_to))
 curs.execute('SELECT subject FROM messages WHERE id = %s', (reply_to,))
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

That way, the script that generates the form can pass information to the script that will eventually process
the same form.

Listing 26-7 shows the source code for the edit.cgi script.

Listing 26-7.  The Message Editor (edit.cgi)

#!/usr/bin/python

print('Content-type: text/html\n')

import cgitb; cgitb.enable()

import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz')
curs = conn.cursor()

import cgi, sys
form = cgi.FieldStorage()
reply_to = form.getvalue('reply_to')

http://bobby-tables.com/

Chapter 26 ■ Project 7: Your Own Bulletin Board

446

print("""
<html>
 <head>
 <title>Compose Message</title>
 </head>
 <body>
 <h1>Compose Message</h1>

 <form action='save.cgi' method='POST'>
 """)

subject = ''
if reply_to is not None:
 print('<input type="hidden" name="reply_to" value="{}"/>'.format(reply_to))
 curs.execute('SELECT subject FROM messages WHERE id = %s', (format(reply_to),))
 subject = curs.fetchone()[0]
 if not subject.startswith('Re: '):
 subject = 'Re: ' + subject

print("""
 Subject:

 <input type='text' size='40' name='subject' value='{}' />

 Sender:

 <input type='text' size='40' name='sender' />

 Message:

 <textarea name='text' cols='40' rows='20'></textarea>

 <input type='submit' value='Save'/>
 </form>
 <hr />
 Back to the main page'
 </body>
</html>
""".format(subject))

Writing the Save Script
Now let’s move on to the final script. The save.cgi script will receive information about a message (from the
form generated by edit.cgi) and will store it in the database. That means using a SQL INSERT command,
and because the database has been modified, conn.commit must be called so the changes aren’t lost when
the script terminates.

Listing 26-8 shows the source code for the save.cgi script.

Listing 26-8.  The Save Script (save.cgi)

#!/usr/bin/python

print('Content-type: text/html\n')

import cgitb; cgitb.enable()

import psycopg2
conn = psycopg2.connect('user=foo password=bar dbname=baz')
curs = conn.cursor()

Chapter 26 ■ Project 7: Your Own Bulletin Board

447

import cgi, sys
form = cgi.FieldStorage()

sender = form.getvalue('sender')
subject = form.getvalue('subject')
text = form.getvalue('text')
reply_to = form.getvalue('reply_to')

if not (sender and subject and text):
 print('Please supply sender, subject, and text')
 sys.exit()

if reply_to is not None:
 query = ("""
 INSERT INTO messages(reply_to, sender, subject, text)
 VALUES(%s, '%s', '%s', '%s')""", (int(reply_to), sender, subject, text))
else:
 query = ("""
 INSERT INTO messages(sender, subject, text)
 VALUES('%s', '%s', '%s')""", (sender, subject, text))

curs.execute(*query)
conn.commit()

print("""
<html>

<head>
 <title>Message Saved</title>
</head>
<body>
 <h1>Message Saved</h1>
 <hr />
 Back to the main page
</body>
</html>s
""")

Trying It Out
To test this system, start by opening main.cgi. From there, click the Post message link. That should take you
to edit.cgi. Enter some values in all the fields and click the Save link.

That should take you to save.cgi, which will display the message “Message Saved.” Click the Back to the
main page link to get back to main.cgi. The listing should now include your new message.

To view your message, simply click its subject. You should go to view.cgi with the correct ID. From
there, try to click the Reply link, which should take you to edit.cgi once again, but this time with reply_to
set (in a hidden input tag) and with a default subject. Once again, enter some text, click Save, and go back to
the main page. It should now show your reply, displayed under the original subject. (If it’s not showing, try to
reload the page.)

The main page is shown in Figure 26-1, the message viewer in Figure 26-2, and the message composer
in Figure 26-3.

Chapter 26 ■ Project 7: Your Own Bulletin Board

448

Figure 26-3.  The message composer

Figure 26-2.  The message viewer

Chapter 26 ■ Project 7: Your Own Bulletin Board

449

Further Exploration
Now that you have the power to develop huge and powerful web applications with reliable and efficient
storage, there are many things you can sink your teeth into.

•	 How about making a web front end to a database of your favorite Monty Python
sketches?

•	 If you’re interested in improving the system in this chapter, you should think about
abstraction. How about creating a utility module with a function to print a standard
header and another to print a standard footer? That way, you wouldn’t need to write
the same HTML stuff in each script. Also, it might be useful to add a user database
with some password handling or abstract away the code for creating a connection.

•	 If you would like a storage solution that doesn’t require a dedicated server, you could
use SQLite (which is used in Chapter 13), or perhaps some non-SQL solution such
as MongoDB (https://mongodb.com), or even a more technical file format such as
HDF5 (http://h5py.org).

What Now?
If you think writing your own discussion forum software is cool, how about writing your own peer-to-peer
file-sharing program, like BitTorrent? Well, in the next project, that’s exactly what you’ll do. And the good
news is that it will be easier than most of the network programming you’ve done so far, thanks to the wonder
of remote procedure calls.

http://dx.doi.org/10.1007/978-1-4842-0028-5_13
https://mongodb.com/
http://h5py.org/

451© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_27

CHAPTER 27

Project 8: File Sharing with
XML-RPC

This chapter’s project is a simple file sharing application. You may be familiar with the concept of file sharing
from such applications as the (in)famous Napster (no longer downloadable in its original form), Gnutella
(see http://www.gnutellaforums.com for discussions about available clients), BitTorrent (available from
http://www.bittorrent.com), and many others. What we’ll be writing is in many ways similar to these,
although quite a bit simpler.

The main technology we’ll be using is XML-RPC. As mentioned in Chapter 15, this is a protocol for
calling procedures (functions) remotely, possibly across a network. If you want, you can quite easily use
plain socket programming (possibly employing some of the techniques described in Chapters 14 and 24) to
implement the functionality of this project. That might even give you better performance, because the
XML-RPC protocol does come with a certain overhead. However, XML-RPC is very easy to use and will most
likely simplify your code considerably.

What’s the Problem?
We want to create a peer-to-peer file-sharing program. File sharing basically means exchanging files
(everything from text files to sound or video clips) between programs running on different machines. Peer-
to-peer is a term that describes a type of interaction between computer programs that is somewhat different
from the common client-server interaction (where a client may connect to a server but not vice versa). In a
peer-to-peer interaction, any peer may connect to any other. In such a (virtual) network of peers, there is
no central authority (as represented by the server in a client/server architecture), which makes the network
more robust. It won’t collapse unless you shut down most of the peers.

Many issues are involved in constructing a peer-to-peer system. In a system such as the old-school
Gnutella, a peer may disseminate a query to all of its neighbors (the other peers it knows about), and they
may subsequently disseminate the query further. Any peer that responds to the query can then send a reply
back through the chain of peers to the initial one. The peers work individually and in parallel. More recent
systems, such as BitTorrent, use even more clever techniques, such as requiring that you upload files in
order to be allowed to download files. To simplify things, this project’s system will contact each neighbor in
turn, waiting for its response before moving on. This is not as efficient as the parallel approach of Gnutella,
but good enough for your purposes.

Most peer-to-peer systems have clever ways of organizing their structure—that is, which peers are
“next to” which—and how this structure evolves over time, as peers connect and disconnect. We’ll keep that
very simple in this project but leave things open for improvements.

http://www.gnutellaforums.com/
http://www.bittorrent.com/
http://dx.doi.org/10.1007/978-1-4842-0028-5_15
http://dx.doi.org/10.1007/978-1-4842-0028-5_14
http://dx.doi.org/10.1007/978-1-4842-0028-5_24

Chapter 27 ■ Project 8: File Sharing with XML-RPC

452

The following are the requirements that the file-sharing program must satisfy:

•	 Each node must keep track of a set of known nodes, from which it can ask for help.
It must be possible for a node to introduce itself to another node (and thereby be
included in this set).

•	 It must be possible to ask a node for a file (by supplying a file name). If the node has
the file in question, it should return it; otherwise, it should ask each of its neighbors
in turn for the same file (and they, in turn, may ask their neighbors). If one of these
nodes has the file, it is returned.

•	 To avoid loops (A asking B, which in turn asks A) and to avoid overly long chains of
neighbors asking neighbors (A asking B asking C . . . asking Z), it must be possible
to supply a history when querying a node. This history is just a list of which nodes
have participated in the query up until this point. By not asking nodes already in the
history, you avoid loops, and by limiting the length of the history, you avoid overly
long query chains.

•	 There must be some way of connecting to a node and identifying yourself as a
trusted party. By doing so, you should be given access to functionality that is not
available to untrusted parties (such as other nodes in the peer-to-peer network).
This functionality may include asking the node to download and store a file from the
other peers in the network (through a query).

•	 You must have some user interface that lets you connect to a node (as a trusted
party) and make it download files. It should be easy to extend and, for that matter,
replace this interface.

All of this may seem a bit steep, but as you’ll see, implementing it isn’t all that hard. And you’ll probably find
that once you have this in place, adding functionality won’t be all that difficult either.

■■ Caution A s pointed out in the documentation, the Python XML-RPC modules are not secure against
maliciously constructed data. Though this project separates “trusted” from “untrusted” nodes, this should not
be seen as any kind of security guarantee. In using the system, you should avoid connecting to nodes you
don’t trust.

Useful Tools
In this project, we’ll use quite a few standard library modules.

The main modules we’ll be using are xmlrpc.client and xmlrpc.server. The use of xmlrpc.client is
quite straightforward. You simply create a ServerProxy object with a URL to the server, and you immediately
have access to the remote procedures. Using xmlrpc.server is a tad more involved, as you’ll learn as you
work through the project in this chapter.

For the interface to the file-sharing program, we’ll be using our friend cmd, from Chapter 24. To get some
(very limited) parallelism, we’ll use the threading module, and to extract the components of a URL, we’ll
use the urllib.parse module. These modules are explained later in the chapter.

Other modules you might want to brush up on are random, string, time, and os.path. See Chapter 10,
as well as the Python Library Reference, for additional details.

http://dx.doi.org/10.1007/978-1-4842-0028-5_24
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

Chapter 27 ■ Project 8: File Sharing with XML-RPC

453

Preparations
The libraries used in this project don’t require much preparation. If you have a fairly recent version of
Python, all of the necessary libraries should be available out of the box.

You don’t strictly have to be connected to a network to use the software in this project, but it will make
things more interesting. If you have access to two (or more) separate machines that are connected (for
example, both connected to the Internet), you can run the software on each of these machines and have
them communicate with each other (although you may need to make changes to any firewall rules you’re
running). For testing purposes, it is also possible to run multiple file-sharing nodes on the same machine.

First Implementation
Before you can write a first prototype of the Node class (a single node or peer in the system), you need to
know a bit about how the SimpleXMLRPCServer class from xmlrpc.server works. It is instantiated with a
tuple of the form (servername, port). The server name is the name of the machine on which the server will
run. (You can use an empty string here to indicate localhost, the machine where you’re actually executing
the program.) The port number can be any port you have access to, typically 1024 and above.

After you have instantiated the server, you may register an instance that implements its “remote
methods,” with the register_instance method. Alternatively, you can register individual functions with
the register_function method. When you’re ready to run the server (so that it can respond to requests
from outside), you call its method serve_forever. You can easily try this out. Start two interactive Python
interpreters. In the first one, enter the following code:

>>> from xmlrpc.server import SimpleXMLRPCServer
>>> s = SimpleXMLRPCServer(("", 4242)) # Localhost at port 4242
>>> def twice(x): # Example function
... return x * 2
...
>>> s.register_function(twice) # Add functionality to the server
>>> s.serve_forever() # Start the server

After executing the last statement, the interpreter should seem to “hang.” Actually, it’s waiting for RPC
requests. To make such a request, switch to the other interpreter and execute the following:

>>> from xmlrpc.client import ServerProxy # ... or simply Server, if you prefer
>>> s = ServerProxy('http://localhost:4242') # Localhost again...
>>> s.twice(2)
4

Pretty impressive, eh? Especially considering that the client part (using xmlrpclib) could be run on a
different machine. (In that case, you would need to use the actual name of the server machine instead of
simply localhost.) As you can see, to access the remote procedures implemented by the server, all that is
required is to instantiate a ServerProxy with the correct URL. It really couldn’t be much easier.

Implementing a Simple Node
Now that we’ve covered the XML-RPC technicalities, it’s time to get started with the coding. (The full source
code of the first prototype is found in Listing 27-1, at the end of this section.)

Chapter 27 ■ Project 8: File Sharing with XML-RPC

454

To find out where to begin, it might be a good idea to review your requirements from earlier in this
chapter. We’re mainly interested in two things: what information must our Node hold (attributes), and what
actions must it be able to perform (methods)?

The Node must have at least the following attributes:

•	 A directory name, so it knows where to find/store its files.

•	 A “secret” (or password) that can be used by others to identify themselves (as trusted
parties).

•	 A set of known peers (URLs).

•	 A URL, which may be added to the query history or possibly supplied to other Nodes.
(This project won’t implement the latter.)

The Node constructor will simply set these four attributes. In addition, we’ll need a method for querying the
Node, a method for making it fetch and store a file, and a method to introduce another Node to it. Let’s call
these methods query, fetch, and hello. The following is a sketch of the class, written as pseudocode:

class Node:

 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query):
 Look for a file (possibly asking neighbors), and return it as a string

 def fetch(self, query, secret):
 If the secret is correct, perform a regular query and store
 the file. In other words, make the Node find the file and download it.

 def hello(self, other):
 Add the other Node to the known peers

Assuming that the set of known URLs is called known, the hello method is very simple. It just adds other to
self.known, where other is the only parameter (a URL). However, XML-RPC requires all methods to return
a value; None is not accepted. So, let’s define two result “codes” that indicate success or failure.

OK = 1
FAIL = 2

Then the hello method can be implemented as follows:

def hello(self, other):
 self.known.add(other)
 return OK

When the Node is registered with a SimpleXMLRPCServer, it will be possible to call this method from the
“outside.”

The query and fetch methods are a bit trickier. Let’s begin with fetch because it’s the simpler of the
two. It must take two parameters: the query and the “secret,” which is required so that your Node can’t be

Chapter 27 ■ Project 8: File Sharing with XML-RPC

455

arbitrarily manipulated by anyone. Note that calling fetch causes the Node to download a file. Access to this
method should therefore be more restricted than, for example, query, which simply passes the file through.

If the supplied secret is not equal to self.secret (the one supplied at startup), fetch simply returns
FAIL. Otherwise, it calls query to get the file corresponding to the given query (a file name). But what does
query return? When you call query, you would like to know whether the query succeeded, and you would
like to have the contents of the relevant file returned if it did. So, let’s define the return value of query as the
pair (tuple) code, data, where code is either OK or FAIL, and data is the sought-after file (if code equals OK)
stored in a string, or an arbitrary value (for example, an empty string) otherwise.

In fetch, the code and the data are retrieved. If the code is FAIL, then fetch simply returns FAIL as
well. Otherwise, it opens a new file (in write mode) whose name is the same as the query and which is
found in the directory self.dirname (you use os.path.join to join the two). The data is written to the file,
the file is closed, and OK is returned. See Listing 27-1 later in this section for the relatively straightforward
implementation.

Now, turn your attention to query. It receives a query as a parameter, but it should also accept a history
(which contains URLs that should not be queried because they are already waiting for a response to the same
query). Because this history is empty in the first call to query, you can use an empty list as a default value.

If you take a look at the code in Listing 27-1, you’ll see that it abstracts away part of the behavior of
query by creating two utility methods called _handle and _broadcast. Note that their names begin with
underscores, which means that they won’t be accessible through XML-RPC. (This is part of the behavior of
SimpleXMLRPCServer, not a part of XML-RPC itself.) That is useful because these methods aren’t meant to
provide separate functionality to an outside party but are there to structure the code.

For now, let’s just assume that _handle takes care of the internal handling of a query (checks whether
the file exists at this specific Node, fetches the data, and so forth) and that it returns a code and some data,
just as query itself is supposed to. As you can see from the listing, if code == OK, then code, data is returned
immediately—the file was found. However, what should query do if the code returned from _handle is FAIL?
Then it must ask all other known Nodes for help. The first step in this process is to add self.url to history.

■■ Note N either the += operator nor the append list method has been used when updating the history because
both of these modify lists in place, and you don’t want to modify the default value itself.

If the new history is too long, query returns FAIL (along with an empty string). The maximum length is
arbitrarily set to 6 and kept in the global constant MAX_HISTORY_LENGTH.

WHY IS MAX_HISTORY_LENGTH SET TO 6?

The idea is that any peer in the network should be able to reach another in, at most, six steps.
This, of course, depends on the structure of the network (which peers know which) but is supported
by the hypothesis of “six degrees of separation,” which applies to people and who they know. For
a description of this hypothesis, see, for example, Wikipedia’s article on six degrees of separation
(http://en.wikipedia.org/wiki/Six_degrees_of_separation).

Using this number in your program may not be very scientific, but at least it seems like a good guess.
On the other hand, in a large network with many nodes, the sequential nature of your program may lead
to bad performance for large values of MAX_HISTORY_LENGTH, so you might want to reduce it if things
get slow.

http://en.wikipedia.org/wiki/Six_degrees_of_separation

Chapter 27 ■ Project 8: File Sharing with XML-RPC

456

If history isn’t too long, the next step is to broadcast the query to all known peers, which is done with the
_broadcast method. The _broadcast method isn’t very complicated (see Listing 27-1). It iterates over a
copy of self.known. If a peer is found in history, the loop continues to the next peer (using the continue
statement). Otherwise, a ServerProxy is constructed, and the query method is called on it. If the query
succeeds, its return value is used as the return value from _broadcast. Exceptions may occur, due to network
problems, a faulty URL, or the fact that the peer doesn’t support the query method. If such an exception
occurs, the peer’s URL is removed from self.known (in the except clause of the try statement enclosing the
query). Finally, if control reaches the end of the function (nothing has been returned yet), FAIL is returned,
along with an empty string.

■■ Note  You shouldn’t simply iterate over self.known because the set may be modified during the iteration.
Using a copy is safer.

The _start method creates a SimpleXMLRPCServer (using the little utility function get_port, which extracts
the port number from a URL), with logRequests set to false (you don’t want to keep a log). It then registers
self with register_instance and calls the server’s serve_forever method.

Finally, the main method of the module extracts a URL, a directory, and a secret (password) from the
command line; creates a Node; and calls its _start method.

For the full code of the prototype, see Listing 27-1.

Listing 27-1.  A Simple Node Implementation (simple_node.py)

from xmlrpc.client import ServerProxy
from os.path import join, isfile
from xmlrpc.server import SimpleXMLRPCServer
from urllib.parse import urlparse
import sys

MAX_HISTORY_LENGTH = 6

OK = 1
FAIL = 2
EMPTY = ''

def get_port(url):
 'Extracts the port from a URL'
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

Chapter 27 ■ Project 8: File Sharing with XML-RPC

457

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.
 """
 code, data = self._handle(query)
 if code == OK:
 return code, data
 else:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH:
 return FAIL, EMPTY
 return self._broadcast(query, history)

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return OK

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: return FAIL
 code, data = self.query(query)
 if code == OK:
 f = open(join(self.dirname, query), 'w')
 f.write(data)
 f.close()
 return OK
 else:
 return FAIL

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", get_port(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): return FAIL, EMPTY
 return OK, open(name).read()

Chapter 27 ■ Project 8: File Sharing with XML-RPC

458

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 code, data = s.query(query, history)
 if code == OK:
 return code, data
 except:
 self.known.remove(other)
 return FAIL, EMPTY

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Now let’s take a look at a simple example of how this program may be used.

Trying Out the First Implementation
Make sure you have several terminals (Terminal.app, xterm, DOS window, or equivalent) open. Let’s say you
want to run two peers (both on the same machine). Create a directory for each of them, such as files1 and
files2. Put a file (for example, test.txt) into the files2 directory. Then, in one terminal, run the following
command:

python simple_node.py http://localhost:4242 files1 secret1

In a real application, you would use the full machine name instead of localhost, and you would probably
use a secret that is a bit more cryptic than secret1.

This is your first peer. Now create another one. In a different terminal, run the following command:

python simple_node.py http://localhost:4243 files2 secret2

As you can see, this peer serves files from a different directory, uses another port number (4243), and
has another secret. If you have followed these instructions, you should have two peers running (each in a
separate terminal window). Let’s start up an interactive Python interpreter and try to connect to one of them.

>>> from xmlrpc.client import *
>>> mypeer = ServerProxy('http://localhost:4242') # The first peer
>>> code, data = mypeer.query('test.txt')
>>> code
2

Chapter 27 ■ Project 8: File Sharing with XML-RPC

459

As you can see, the first peer fails when asked for the file test.txt. (The return code 2 represents failure,
remember?) Let’s try the same thing with the second peer.

>>> otherpeer = ServerProxy('http://localhost:4243') # The second peer
>>> code, data = otherpeer.query('test.txt')
>>> code
1

This time, the query succeeds because the file test.txt is found in the second peer’s file directory. If your
test file doesn’t contain too much text, you can display the contents of the data variable to make sure that the
contents of the file have been transferred properly.

>>> data
'This is a test\n'

So far, so good. How about introducing the first peer to the second one?

>>> mypeer.hello('http://localhost:4243') # Introducing mypeer to otherpeer

Now the first peer knows the URL of the second and thus may ask it for help. Let’s try querying the first peer
again. This time, the query should succeed.

>>> mypeer.query('test.txt')
[1, 'This is a test\n']

Bingo!
Now there is only one thing left to test: can you make the first node actually download and store the file

from the second one?

>>> mypeer.fetch('test.txt', 'secret1')
1

Well, the return value (1) indicates success. And if you look in the files1 directory, you should see that the
file test.txt has miraculously appeared. Feel free to start several peers (on different machines, if you want
to) and introduce them to each other. When you grow tired of playing, proceed to the next implementation.

Second Implementation
The first implementation has plenty of flaws and shortcomings. I won’t address all of them (some possible
improvements are discussed in the section “Further Exploration” at the end of this chapter), but here are
some of the more important ones:

•	 If you try to stop a Node and then restart it, you will probably get some error message
about the port being in use already.

•	 You’ll probably want a more user-friendly interface than xmlrpc.client in an
interactive Python interpreter.

Chapter 27 ■ Project 8: File Sharing with XML-RPC

460

•	 The return codes are inconvenient. A more natural and Pythonic solution would be
to use a custom exception if the file can’t be found.

•	 The Node doesn’t check whether the file it returns is actually inside the file directory.
By using paths such as '../somesecretfile.txt', a sneaky cracker may get
unlawful access to any of your other files.

The first problem is easy to solve. You simply set the allow_reuse_address attribute of the
SimpleXMLRPCServer to true.

SimpleXMLRPCServer.allow_reuse_address = 1

If you don’t want to modify this class directly, you can create your own subclass. The other changes are a bit
more involved and are discussed in the following sections. The source code is shown in Listings 27-2 and 27-3
later in this chapter. (You might want to take a quick look at these listings before reading on.)

Creating the Client Interface
The client interface uses the Cmd class from the cmd module. For details about how this works, see Chapter 24
or the Python Library Reference. Simply put, you subclass Cmd to create a command-line interface and
implement a method called do_foo for each command foo you want it to be able to handle. This method will
receive the rest of the command line as its only argument (as a string). For example, if you type this in the
command-line interface:

say hello

the method do_say is called with the string 'hello' as its only argument. The prompt of the Cmd subclass is
determined by the prompt attribute.

The only commands implemented in your interface will be fetch (to download a file) and exit (to exit
the program). The fetch command simply calls the fetch method of the server, printing an error message
if the file could not be found. The exit command prints an empty line (for aesthetic reasons only) and calls
sys.exit. (The EOF command corresponds to “end of file,” which occurs when the user presses Ctrl+D in
UNIX.)

But what is all the stuff going on in the constructor? Well, you want each client to be associated with
a peer of its own. You could simply create a Node object and call its _start method, but then your Client
couldn’t do anything until the _start method returned, which makes the Client completely useless. To
fix this, the Node is started in a separate thread. Normally, using threads involves a lot of safeguarding and
synchronization with locks and the like. However, because a Client interacts with its Node only through
XML-RPC, you don’t need any of this. To run the _start method in a separate thread, you just need to put
the following code into your program at some suitable place:

from threading import Thread
n = Node(url, dirname, self.secret)
t = Thread(target=n._start)
t.start()

■■ Caution  You should be careful when rewriting the code of this project. The minute your Client starts
interacting directly with the Node object or vice versa, you may easily run into trouble because of the threading.
Make sure you fully understand threading before you do this.

http://dx.doi.org/10.1007/978-1-4842-0028-5_24

Chapter 27 ■ Project 8: File Sharing with XML-RPC

461

To make sure that the server is fully started before you start connecting to it with XML-RPC, you’ll give it a
head start and wait for a moment with time.sleep.

Afterward, you’ll go through all the lines in a file of URLs and introduce your server to them with the
hello method.

You don’t really want to be bothered with coming up with a clever secret password. Instead, you can use
the utility function random_string (in Listing 27-3, shown later in this chapter), which generates a random
secret string that is shared between the Client and the Node.

Raising Exceptions
Instead of returning a code indicating success or failure, you’ll just assume success and raise an exception
in the case of failure. In XML-RPC, exceptions (or faults) are identified by numbers. For this project, I have
(arbitrarily) chosen the numbers 100 and 200 for ordinary failure (an unhandled request) and a request
refusal (access denied), respectively.

UNHANDLED = 100
ACCESS_DENIED = 200

class UnhandledQuery(Fault):
 """
 An exception that represents an unhandled query.
 """
 def __init__(self, message="Couldn't handle the query"):
 super().__init__(UNHANDLED, message)

class AccessDenied(Fault):
 """
 An exception that is raised if a user tries to access a resource for
 which he or she is not authorized.
 """
 def __init__(self, message="Access denied"):
 super().__init__(ACCESS_DENIED, message)

The exceptions are subclasses of xmlrpc.client.Fault. When they are raised in the server, they are passed
on to the client with the same faultCode. If an ordinary exception (such as IOException) is raised in the
server, an instance of the Fault class is still created, so you can’t simply use arbitrary exceptions here.

As you can see from the source code, the logic is still basically the same, but instead of using if
statements for checking returned codes, the program now uses exceptions. (Because you can use only Fault
objects, you need to check the faultCodes. If you weren’t using XML-RPC, you would have used different
exception classes instead, of course.)

Validating File Names
The last issue to deal with is to check whether a given file name is found within a given directory. There are
several ways to do this, but to keep things platform-independent (so they work in Windows, in UNIX, and in
macOS, for example), you should use the module os.path.

The simple approach taken here is to create an absolute path from the directory name and the file name
(so that, for example, '/foo/bar/../baz' is converted to '/foo/baz'), the directory name is joined with an
empty file name (using os.path.join) to ensure that it ends with a file separator (such as '/'), and then we

Chapter 27 ■ Project 8: File Sharing with XML-RPC

462

check that the absolute file name begins with the absolute directory name. If it does, the file is actually inside
the directory.

The full source code for the second implementation is shown Listings 27-2 and 27-3.

Listing 27-2.  A New Node Implementation (server.py)

from xmlrpc.client import ServerProxy, Fault
from os.path import join, abspath, isfile
from xmlrpc.server import SimpleXMLRPCServer
from urllib.parse import urlparse
import sys

SimpleXMLRPCServer.allow_reuse_address = 1

MAX_HISTORY_LENGTH = 6

UNHANDLED = 100
ACCESS_DENIED = 200

class UnhandledQuery(Fault):
 """
 An exception that represents an unhandled query.
 """
 def __init__(self, message="Couldn't handle the query"):
 super().__init__(UNHANDLED, message)

class AccessDenied(Fault):
 """
 An exception that is raised if a user tries to access a
 resource for which he or she is not authorized.
 """
 def __init__(self, message="Access denied"):
 super().__init__(ACCESS_DENIED, message)

def inside(dir, name):
 """
 Checks whether a given file name lies within a given directory.
 """
 dir = abspath(dir)
 name = abspath(name)
 return name.startswith(join(dir, ''))

def get_port(url):
 """
 Extracts the port number from a URL.
 """
 name = urlparse(url)[1]
 parts = name.split(':')
 return int(parts[-1])

Chapter 27 ■ Project 8: File Sharing with XML-RPC

463

class Node:
 """
 A node in a peer-to-peer network.
 """
 def __init__(self, url, dirname, secret):
 self.url = url
 self.dirname = dirname
 self.secret = secret
 self.known = set()

 def query(self, query, history=[]):
 """
 Performs a query for a file, possibly asking other known Nodes for
 help. Returns the file as a string.
 """
 try:
 return self._handle(query)
 except UnhandledQuery:
 history = history + [self.url]
 if len(history) >= MAX_HISTORY_LENGTH: raise
 return self._broadcast(query, history)

 def hello(self, other):
 """
 Used to introduce the Node to other Nodes.
 """
 self.known.add(other)
 return 0

 def fetch(self, query, secret):
 """
 Used to make the Node find a file and download it.
 """
 if secret != self.secret: raise AccessDenied
 result = self.query(query)
 f = open(join(self.dirname, query), 'w')
 f.write(result)
 f.close()
 return 0

 def _start(self):
 """
 Used internally to start the XML-RPC server.
 """
 s = SimpleXMLRPCServer(("", get_port(self.url)), logRequests=False)
 s.register_instance(self)
 s.serve_forever()

Chapter 27 ■ Project 8: File Sharing with XML-RPC

464

 def _handle(self, query):
 """
 Used internally to handle queries.
 """
 dir = self.dirname
 name = join(dir, query)
 if not isfile(name): raise UnhandledQuery
 if not inside(dir, name): raise AccessDenied
 return open(name).read()

 def _broadcast(self, query, history):
 """
 Used internally to broadcast a query to all known Nodes.
 """
 for other in self.known.copy():
 if other in history: continue
 try:
 s = ServerProxy(other)
 return s.query(query, history)
 except Fault as f:
 if f.faultCode == UNHANDLED: pass
 else: self.known.remove(other)
 except:
 self.known.remove(other)
 raise UnhandledQuery

def main():
 url, directory, secret = sys.argv[1:]
 n = Node(url, directory, secret)
 n._start()

if __name__ == '__main__': main()

Listing 27-3.  A Node Controller Interface (client.py)

from xmlrpc.client import ServerProxy, Fault
from cmd import Cmd
from random import choice
from string import ascii_lowercase
from server import Node, UNHANDLED
from threading import Thread
from time import sleep
import sys

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

def random_string(length):
 """
 Returns a random string of letters with the given length.
 """
 chars = []
 letters = ascii_lowercase[:26]

Chapter 27 ■ Project 8: File Sharing with XML-RPC

465

 while length > 0:
 length -= 1
 chars.append(choice(letters))
 return ''.join(chars)

class Client(Cmd):
 """
 A simple text-based interface to the Node class.
 """

 prompt = '> '

 def __init__(self, url, dirname, urlfile):
 """
 Sets the url, dirname, and urlfile, and starts the Node
 Server in a separate thread.
 """
 Cmd.__init__(self)
 self.secret = random_string(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def do_fetch(self, arg):
 "Call the fetch method of the Server."
 try:
 self.server.fetch(arg, self.secret)
 except Fault as f:
 if f.faultCode != UNHANDLED: raise
 print("Couldn't find the file", arg)

 def do_exit(self, arg):
 "Exit the program."
 print()
 sys.exit()

 do_EOF = do_exit # End-Of-File is synonymous with 'exit'

def main():
 urlfile, directory, url = sys.argv[1:]
 client = Client(url, directory, urlfile)
 client.cmdloop()

if __name__ == '__main__': main()

Chapter 27 ■ Project 8: File Sharing with XML-RPC

466

Trying Out the Second Implementation
Let’s see how the program is used. Start it like this:

python client.py urls.txt directory http://servername.com:4242

The file urls.txt should contain one URL per line—the URLs of all the other peers you know. The directory
given as the second argument should contain the files you want to share (and will be the location where new
files are downloaded). The last argument is the URL to the peer. When you run this command, you should
get a prompt like this:

>

Try fetching a nonexistent file:

> fetch fooo
Couldn't find the file fooo

By starting several nodes (either on the same machine using different ports or on different machines) that
know about each other (just put all the URLs in the URL files), you can try these out as you did with the first
prototype. When you get bored with this, move on to the next section.

Further Exploration
You can probably think of several ways to improve and extend the system described in this chapter. Here are
some ideas:

•	 Add caching. If your node relays a file through a call to query, why not store the file at
the same time? That way, you can respond more quickly the next time someone asks
for the same file. You could perhaps set a maximum size for the cache, remove old
files, and so on.

•	 Use a threaded or asynchronous server (a bit difficult). That way, you can ask several
other nodes for help without waiting for their replies, and they can later give you the
reply by calling a reply method.

•	 Allow more advanced queries, such as querying on the contents of text files.

•	 Use the hello method more extensively. When you discover a new peer (through a
call to hello), why not introduce it to all the peers you know? Perhaps you can think
of more clever ways of discovering new peers?

•	 Read up on the representational state transfer (REST) philosophy of distributed
systems. REST is an alternative to web service technologies such as XML-RPC.
(See, for example, http://en.wikipedia.org/wiki/REST.)

•	 Use xmlrpc.client.Binary to wrap the files, to make the transfer safer for nontext files.

•	 Read the SimpleXMLRPCServer code. Check out the DocXMLRPCServer class and the
multicall extension in libxmlrpc.

What Now?
Now that you have a peer-to-peer file-sharing system working, how about making it more user friendly? In
the next chapter, you’ll learn how to add a GUI as an alternative to the current cmd-based interface.

http://en.wikipedia.org/wiki/REST.)

467© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_28

CHAPTER 28

Project 9: File Sharing II—Now
with GUI!

This is a relatively short project because much of the functionality you need has already been written—in
Chapter 27. In this chapter, you see how easy it can be to add a GUI to an existing Python program.

What’s the Problem?
In this project, we’ll expand the file-sharing system developed in Chapter 27, with a GUI client. This will
make the program easier to use, which means that more people might choose to use it (and, of course,
multiple users sharing files is the whole point of the program). A secondary goal of this project is to show
that a program that has a sufficiently modular design can be quite easy to extend (one of the arguments for
using object-oriented programming).

The GUI client should satisfy the following requirements:

•	 It should allow you to enter a file name and submit it to the server’s fetch method.

•	 It should list the files currently available in the server’s file directory.

That’s it. Because you already have much of the system working, the GUI part is a relatively simple extension.

Useful Tools
In addition to the tools used in Chapter 27, you will need the Tkinter toolkit, which comes bundled with
most Python installations. For more information about Tkinter, see Chapter 12. If you want to use another
GUI toolkit, feel free to do so. The example in this chapter will give you the general idea of how you can build
your own implementation, with your favorite tools.

Preparations
Before you begin this project, you should have Project 8 (from Chapter 27) in place and a usable GUI toolkit
installed, as mentioned in the previous section. Beyond that, no significant preparations are necessary for
this project.

http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_12
http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

468

First Implementation
If you want to take a peek at the full source code for the first implementation, you can find it in Listing 28-1
later in this section. Much of the functionality is quite similar to that of the project in the preceding chapter.
The client presents an interface (the fetch method) through which the user may access the functionality of
the server. Let’s review the GUI-specific parts of the code.

The client in Chapter 27 was a subclass of cmd.Cmd; the Client described in this chapter subclasses
tkinter.Frame. While you’re not required to subclass tkinter.Frame (you could create a completely
separate Client class), it can be a natural way of organizing your code. The GUI-related setup is placed in
a separate method, called create_widgets, which is called in the constructor. It creates an entry for file
names, and a button for fetching a given file, with the action of the button set to the method fetch_handler.
This event handler is quite similar to the handler do_fetch from Chapter 27. It retrieves the query from
self.input (the text field). It then calls self.server.fetch inside a try/except statement.

The source code for the first implementation is shown in Listing 28-1.

Listing 28-1.  A Simple GUI Client (simple_guiclient.py)

from xmlrpc.client import ServerProxy, Fault
from server import Node, UNHANDLED
from client import random_string
from threading import Thread
from time import sleep
from os import listdir
import sys
import tkinter as tk

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

class Client(tk.Frame):

 def __init__(self, master, url, dirname, urlfile):
 super().__init__(master)
 self.node_setup(url, dirname, urlfile)
 self.pack()
 self.create_widgets()

 def node_setup(self, url, dirname, urlfile):
 self.secret = random_string(SECRET_LENGTH)
 n = Node(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

469

 def create_widgets(self):
 self.input = input = tk.Entry(self)
 input.pack(side='left')

 self.submit = submit = tk.Button(self)
 submit['text'] = "Fetch"
 submit['command'] = self.fetch_handler
 submit.pack()

 def fetch_handler(self):
 query = self.input.get()
 try:
 self.server.fetch(query, self.secret)
 except Fault as f:
 if f.faultCode != UNHANDLED: raise
 print("Couldn't find the file", query)

def main():
 urlfile, directory, url = sys.argv[1:]

 root = tk.Tk()
 root.title("File Sharing Client")

 client = Client(root, url, directory, urlfile)
 client.mainloop()

if __name__ == "__main__": main()

Except for the relatively simple code explained previously, the GUI client works just like the text-based client
in Chapter 27. You can run it in the same manner, too. To run this program, you need a URL file, a directory
of files to share, and a URL for your Node. Here is a sample run:

$ python simple_guiclient.py urlfile.txt files/ http://localhost:8000

Note that the file urlfile.txt must contain the URLs of some other Nodes for the program to be of any
use. You can either start several programs on the same machine (with different port numbers) for testing
purposes or run them on different machines. Figure 28-1 shows the GUI of the client.

This implementation works, but it performs only part of its job. It should also list the files available in the
server’s file directory. To do that, the server (Node) itself must be extended.

Figure 28-1.  The simple GUI client

http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

470

Second Implementation
The first prototype was very simple. It did its job as a file-sharing system but wasn’t very user friendly. It
would help a lot if users could see which files they had available (either located in the file directory when the
program starts or subsequently downloaded from another Node). The second implementation will address
this file listing issue. The full source code can be found in Listing 28-2.

To get a listing from a Node, you must add a method. You could protect it with a password as you have
done with fetch, but making it publicly available may be useful, and it doesn’t represent any real security
risk. Extending an object is really easy: you can do it through subclassing. You simply construct a subclass of
Node called ListableNode, with a single additional method, list, which uses the method os.listdir, which
returns a list of all the files in a directory.

class ListableNode(Node):

 def list(self):
 return listdir(self.dirname)

To access this server method, the method update_list is added to the client.

def update_list(self):
 self.files.Set(self.server.list())

The attribute self.files refers to a list box, which has been added in the create_widgets method. The
update_list method is called in create_widgets at the point where the list box is created and again each
time fetch_handler is called (because calling fetch_handler may potentially alter the list of files).

Listing 28-2.  The Finished GUI Client (guiclient.py)

from xmlrpc.client import ServerProxy, Fault
from server import Node, UNHANDLED
from client import random_string
from threading import Thread
from time import sleep
from os import listdir
import sys
import tkinter as tk

HEAD_START = 0.1 # Seconds
SECRET_LENGTH = 100

class ListableNode(Node):

 def list(self):
 return listdir(self.dirname)

class Client(tk.Frame):

 def __init__(self, master, url, dirname, urlfile):
 super().__init__(master)
 self.node_setup(url, dirname, urlfile)
 self.pack()
 self.create_widgets()

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

471

 def node_setup(self, url, dirname, urlfile):
 self.secret = random_string(SECRET_LENGTH)
 n = ListableNode(url, dirname, self.secret)
 t = Thread(target=n._start)
 t.setDaemon(1)
 t.start()
 # Give the server a head start:
 sleep(HEAD_START)
 self.server = ServerProxy(url)
 for line in open(urlfile):
 line = line.strip()
 self.server.hello(line)

 def create_widgets(self):
 self.input = input = tk.Entry(self)
 input.pack(side='left')

 self.submit = submit = tk.Button(self)
 submit['text'] = "Fetch"
 submit['command'] = self.fetch_handler
 submit.pack()

 self.files = files = tk.Listbox()
 files.pack(side='bottom', expand=True, fill=tk.BOTH)
 self.update_list()

 def fetch_handler(self):
 query = self.input.get()
 try:
 self.server.fetch(query, self.secret)
 self.update_list()
 except Fault as f:
 if f.faultCode != UNHANDLED: raise
 print("Couldn't find the file", query)

 def update_list(self):
 self.files.delete(0, tk.END)
 self.files.insert(tk.END, self.server.list())

def main():
 urlfile, directory, url = sys.argv[1:]

 root = tk.Tk()
 root.title("File Sharing Client")

 client = Client(root, url, directory, urlfile)
 client.mainloop()

if __name__ == '__main__': main()

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

472

And that’s it. You now have a GUI-enabled peer-to-peer file-sharing program, which can be run with this
command:

$ python guiclient.py urlfile.txt files/ http://localhost:8000

Figure 28-2 shows the finished GUI client.

Of course, there are plenty of ways to expand the program. For some ideas, see the next section. Beyond that,
just let your imagination go wild.

Further Exploration
Some ideas for extending the file-sharing system are given in Chapter 27. Here are some more:

•	 Let the user select the desired file, rather than typing in its name.

•	 Add a status bar that displays such messages as “Downloading” or “Couldn’t find file
foo.txt.”

•	 Figure out ways for Nodes to share their “friends.” For example, when one Node is
introduced to another, each of them could introduce the other to the Nodes it already
knows. Also, before a Node shuts down, it might tell all its current neighbors about all
the Nodes it knows.

•	 Add a list of known Nodes (URLs) to the GUI. Make it possible to add new URLs and
save them in a URL file.

Figure 28-2.  The finished GUI client

http://dx.doi.org/10.1007/978-1-4842-0028-5_27

Chapter 28 ■ Project 9: File Sharing II—Now with GUI!

473

What Now?
You’ve written a full-fledged GUI-enabled peer-to-peer file sharing system. Although that sounds pretty
challenging, it wasn’t all that hard, was it? Now it’s time to face the last and greatest challenge: writing your
own arcade game.

475© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5_29

CHAPTER 29

Project 10: Do-It-Yourself
Arcade Game

Welcome to the final project. Now that you’ve sampled several of Python’s many capabilities, it’s time to go
out with a bang. In this chapter, you’ll learn how to use Pygame, an extension that enables you to write
full-fledged, full-screen arcade games in Python. Although easy to use, Pygame is quite powerful and
consists of several components that are thoroughly described in the Pygame documentation (available
on the Pygame web site, http://pygame.org). This project introduces you to some of the main Pygame
concepts, but because this chapter is only meant as a starting point, I’ve skipped several interesting features,
such as sound and video handling. I recommend that you investigate the other features yourself, once
you’ve familiarized yourself with the basics. You might also want to take a look at Beginning Python Games
Development by Will McGugan and Harrison Kinsley (Apress, 2015) or Program Arcade Games with Python
and Pygame by Paul Craven (Apress, 2016).

What’s the Problem?
So, how do you write a computer game? The basic design process is similar to the one you use when writing
any other program, but before you can develop an object model, you need to design the game itself. What
are its characters, its setting, and its objectives?

I’ll keep things reasonably simple here, so as not to clutter the presentation of the basic Pygame
concepts. Feel free to create a much more elaborate game if you like.

The game we’ll create is based on the well-known Monty Python sketch “Self-Defense Against Fresh
Fruit.” In this sketch, a Sergeant Major (John Cleese) is instructing his soldiers in self-defense techniques
against attackers wielding fresh fruit, such as pomegranates, mangoes in syrup, greengages, and bananas.
The defense techniques include using a gun, unleashing a tiger, and dropping a 16-ton weight on top of the
attacker. In this game, we’ll turn things around—the player controls a banana that is desperately trying to
survive a course in self-defense, avoiding a barrage of 16-ton weights dropping from above. I guess a fitting
name for the game might be Squish.

■■ Note  If you would like to try your hand at a game of your own as you follow this chapter, feel free to do so.
If you just want to change the look and feel of the game, simply replace the graphics (a couple of GIF or PNG
images) and some of the descriptive text.

http://pygame.org/

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

476

The specific goals of this project revolve around the game design. The game should behave as it was
designed (the banana should be movable, and the 16-ton weight should drop from above). In addition, the
code should be modular and easily extensible (as always). A useful requirement might be that game states
(such as the game introduction, the various game levels, and the “game over” state) should be part of the
design and that new states should be easy to add.

Useful Tools
The only new tool you need in this project is Pygame, which you can download from the Pygame web site
(http://pygame.org). To get Pygame to work in UNIX, you may need to install some extra software, but
it’s all documented in the Pygame installation instructions (also available from the Pygame web site). The
easiest option is probably, as with most Python packages, to simply install Pygame using pip.

The Pygame distribution consists of several modules, most of which you won’t need in this project. The
following sections describe the modules you do need. (Only the specific functions or classes you’ll need are
discussed here.) In addition to the functions described in the following sections, the various objects used
(such as surfaces, groups, and sprites) have several useful methods, which I’ll discuss as they are used in the
implementation sections.

pygame
The pygame module automatically imports all the other Pygame modules, so if you place import pygame
at the top of your program, you can automatically access the other modules, such as pygame.display and
pygame.font.

The pygame module contains (among other things) the Surface function, which returns a new surface
object. Surface objects are simply blank images of a given size that you can use for drawing and blitting. To
blit (calling a surface object’s blit method) simply means to transfer the contents of one surface to another.
(The word blit is derived from the technical term block transfer, which is abbreviated BLT.)

The init function is central to any Pygame game. It must be called before your game enters its main
event loop. This function automatically initializes all the other modules (such as font and image).

You need the error class when you want to catch Pygame-specific errors.

pygame.locals
The pygame.locals module contains names (variables) you might want in your own module’s scope. It
contains names for event types, keys, video modes, and more. It is designed to be safe to use when you
import everything (from pygame.locals import *), although if you know what you need, you may want to
be more specific (for example, from pygame.locals import FULLSCREEN).

pygame.display
The pygame.display module contains functions for dealing with the Pygame display, which either may
be contained in a normal window or may occupy the entire screen. In this project, you need the following
functions:

flip: Updates the display. In general, when you modify the current screen,
you do that in two steps. First, you perform all the necessary modifications to
the surface object returned from the get_surface function, and then you call
pygame.display.flip to update the display to reflect your changes.

http://pygame.org/

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

477

update: Used instead of flip when you want to update only a part of the screen.
It can be used with the list of rectangles returned from the draw method of the
RenderUpdates class (described in the upcoming discussion of the pygame.
sprite module) as its only parameter.

set_mode: Sets the display size and the type of display. Several variations are
possible, but here you’ll restrict yourself to the FULLSCREEN version and the
default “display in a window” version.

set_caption: Sets a caption for the Pygame program. The set_caption function
is primarily useful when you run your game in a window (as opposed to full
screen) because the caption is used as the window title.

get_surface: Returns a surface object on which you can draw your graphics
before calling pygame.display.flip or pygame.display.blit. The only surface
method used for drawing in this project is blit, which transfers the graphics
found in one surface object onto another one, at a given location. (In addition,
the draw method of a Group object will be used to draw Sprite objects onto the
display surface.)

pygame.font
The pygame.font module contains the Font function. Font objects are used to represent different typefaces.
They can be used to render text as images that may then be used as normal graphics in Pygame.

pygame.sprite
The pygame.sprite module contains two very important classes: Sprite and Group.

The Sprite class is the base class for all visible game objects—in the case of this project, the banana and
the 16-ton weight. To implement your own game objects, you subclass Sprite, override its constructor to set
its image and rect properties (which determine how the Sprite looks and where it is placed), and override
its update method, which is called whenever the sprite might need updating.

Instances of the Group class (and its subclasses) are used as containers for Sprites. In general, using
groups is A Good Thing. In simple games (such as in this project), just create a group called sprites or
allsprites or something similar and add all your Sprites to it. When you call the Group object’s update
method, the update methods of all your Sprite objects will then be called automatically. Also, the Group
object’s clear method is used to erase all the Sprite objects it contains (using a callback to do the erasing),
and the draw method can be used to draw all the Sprites.

In this project, you’ll use the RenderUpdates subclass of Group, whose draw method returns a list of
rectangles that have been affected. These may then be passed to pygame.display.update to update only the
parts of the display that need to be updated. This can potentially improve the performance of the game quite
a bit.

pygame.mouse
In Squish, you’ll use the pygame.mouse module for just two things: hiding the mouse cursor and getting the
mouse position. You hide the mouse with pygame.mouse.set_visible(False), and you get the position
with pygame.mouse.get_pos().

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

478

pygame.event
The pygame.event module keeps track of various events such as mouse clicks, mouse motion, keys that are
pressed or released, and so on. To get a list of the most recent events, use the function pygame.event.get.

■■ Note  If you rely only on state information such as the mouse position returned by pygame.mouse.get_pos,
you don’t need to use pygame.event.get. However, you need to keep the Pygame updated (“in sync”), which
you can do by calling the function pygame.event.pump regularly.

pygame.image
The pygame.image module is used to deal with images such as those stored in GIF, PNG, JPEG, and several
other file formats. In this project, you need only the load function, which reads an image file and creates a
surface object containing the image.

Preparations
Now that you know a bit about what some of the different Pygame modules do, it’s almost time to start
hacking away at the first prototype game. There are, however, a couple of preparations you need to make
before you can get the prototype up and running. First of all, you should make sure that you have Pygame
installed, including the image and font modules. (You might want to import both of these in an interactive
Python interpreter to make sure they are available.)

You also need a couple of images. If you want to stick to the theme of the game as presented in this
chapter, you need one image depicting a 16-ton weight and one depicting a banana, both of which are
shown in Figure 29-1. Their exact sizes aren’t all that important, but you might want to keep them in the
range of 100 × 100 through 200 × 200 pixels. You should have these two images available in a common image
file format such as GIF, PNG, or JPEG.

Figure 29-1.  The weight and banana graphics used in my version of the game

■■ Note  You might also want a separate image for the splash screen, the first screen that greets the user of
your game. In this project, I simply used the weight symbol for that as well.

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

479

First Implementation
When you use a new tool such as Pygame, it often pays off to keep the first prototype as simple as possible
and to focus on learning the basics of the new tool, rather than the intricacies of the program itself. Let’s
restrict the first version of Squish to an animation of 16-ton weights falling from above. The steps needed for
this are as follows:

	 1.	 Initialize Pygame, using pygame.init, pygame.display.set_mode, and pygame.
mouse.set_visible. Get the screen surface with pygame.display.get_surface.
Fill the screen surface with a solid white color (with the fill method) and call
pygame.display.flip to display this change.

	 2.	 Load the weight image.

	 3.	 Create an instance of a custom Weight class (a subclass of Sprite) using the
image. Add this object to a RenderUpdates group called (for example) sprites.
(This will be particularly useful when dealing with multiple sprites.)

	 4.	 Get all recent events with pygame.event.get. Check all the events in turn. If an
event of type QUIT is found or if an event of type KEYDOWN representing the escape
key (K_ESCAPE) is found, exit the program. (The event types and keys are kept in
the attributes type and key in the event object. Constants such as QUIT, KEYDOWN,
and K_ESCAPE can be imported from the module pygame.locals.)

	 5.	 Call the clear and update methods of the sprites group. The clear method
uses the callback to clear all the sprites (in this case, the weight), and the update
method calls the update method of the Weight instance. (You must implement
the latter method yourself.)

	 6.	 Call sprites.draw with the screen surface as the argument to draw the Weight
sprite at its current position. (This position changes each time update is called.)

	 7.	 Call pygame.display.update with the rectangle list returned from sprites.draw
to update the display only in the right places. (If you don’t need the performance,
you can use pygame.display.flip here to update the entire display.)

	 8.	 Repeat steps 4 through 7.

See Listing 29-1 for code that implements these steps. The QUIT event would occur if the user quit the
game—for example, by closing the window.

Listing 29-1.  A Simple “Falling Weights” Animation (weights.py)

import sys, pygame
from pygame.locals import *
from random import randrange

class Weight(pygame.sprite.Sprite):

 def __init__(self, speed):
 pygame.sprite.Sprite.__init__(self)
 self.speed = speed
 # image and rect used when drawing sprite:
 self.image = weight_image
 self.rect = self.image.get_rect()
 self.reset()

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

480

 def reset(self):
 """
 Move the weight to a random position at the top of the screen.
 """
 self.rect.top = -self.rect.height
 self.rect.centerx = randrange(screen_size[0])

 def update(self):
 """
 Update the weight for display in the next frame.
 """
 self.rect.top += self.speed

 if self.rect.top > screen_size[1]:
 self.reset()

Initialize things
pygame.init()
screen_size = 800, 600
pygame.display.set_mode(screen_size, FULLSCREEN)
pygame.mouse.set_visible(0)

Load the weight image
weight_image = pygame.image.load('weight.png')
weight_image = weight_image.convert() # ... to match the display

You might want a different speed, of courase
speed = 5

Create a sprite group and add a Weight
sprites = pygame.sprite.RenderUpdates()
sprites.add(Weight(speed))

Get the screen surface and fill it
screen = pygame.display.get_surface()
bg = (255, 255, 255) # White
screen.fill(bg)
pygame.display.flip()

Used to erase the sprites:
def clear_callback(surf, rect):
 surf.fill(bg, rect)

while True:
 # Check for quit events:
 for event in pygame.event.get():
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()
 # Erase previous positions:

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

481

 sprites.clear(screen, clear_callback)
 # Update all sprites:
 sprites.update()
 # Draw all sprites:
 updates = sprites.draw(screen)
 # Update the necessary parts of the display:
 pygame.display.update(updates)

You can run this program with the following command:

$ python weights.py

You should make sure that both weights.py and weight.png (the weight image) are in the current directory
when you execute this command. Figure 29-2 shows a screenshot of the result.

Most of the code should speak for itself. However, a few points need some explanation:

•	 All sprite objects should have two attributes called image and rect. The former should
contain a surface object (an image), and the latter should contain a rectangle object
(just use self.image.get_rect() to initialize it). These two attributes will be used
when drawing the sprites. By modifying self.rect, you can move the sprite around.

•	 Surface objects have a method called convert, which can be used to create a copy
with a different color model. You don’t need to worry about the details, but using
convert without any arguments creates a surface that is tailored for the current
display, and displaying it will be as fast as possible.

•	 Colors are specified through RGB triples (red-green-blue, with each value being
0–255), so the tuple (255, 255, 255) represents white.

Figure 29-2.  A simple animation of falling weights

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

482

You modify a rectangle (such as self.rect in this case) by assigning to its attributes (top, bottom, left,
right, topleft, topright, bottomleft, bottomright, size, width, height, center, centerx, centery,
midleft, midright, midtop, and midbottom) or calling methods such as inflate or move. (These are all
described in the Pygame documentation at http://pygame.org/docs/ref/rect.html.)

Now that the Pygame technicalities are in place, it’s time to extend and refactor the game logic a bit.

Second Implementation
In this section, instead of walking you through the design and implementation step by step, I have added
copious comments and docstrings to the source code, shown in Listings 29-2 through 29-4. You can examine
the source (“use the source,” remember?) to see how it works, but here is a short rundown of the essentials
(and some not-quite-intuitive particulars):

•	 The game consists of five files: config.py, which contains various configuration
variables; objects.py, which contains the implementations of the game objects;
squish.py, which contains the main Game class and the various game state classes;
and weight.png and banana.png, the two images used in the game.

•	 The rectangle method clamp ensures that a rectangle is placed within another
rectangle, moving it if necessary. This is used to ensure that the banana doesn’t move
off-screen.

•	 The rectangle method inflate resizes (inflates) a rectangle by a given number of
pixels in the horizontal and vertical direction. This is used to shrink the banana
boundary, to allow some overlap between the banana and the weight before a hit (or
“squish”) is registered.

•	 The game itself consists of a game object and various game states. The game object
has only one state at a time, and the state is responsible for handling events and
displaying itself on the screen. A state may also tell the game to switch to another
state. (A Level state may, for example, tell the game to switch to a GameOver state.)

That’s it. You can run the game by executing the squish.py file, as follows:

$ python squish.py

You should make sure that the other files are in the same directory. In Windows, you can simply
double-click the squish.py file.

Listing 29-2.  The Squish Configuration File (config.py)

Configuration file for Squish

Feel free to modify the configuration variables below to taste.
If the game is too fast or too slow, try to modify the speed
variables.

Change these to use other images in the game:
banana_image = 'banana.png'
weight_image = 'weight.png'
splash_image = 'weight.png'

http://pygame.org/docs/ref/rect.html

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

483

Change these to affect the general appearance:
screen_size = 800, 600
background_color = 255, 255, 255
margin = 30
full_screen = 1
font_size = 48

These affect the behavior of the game:
drop_speed = 1
banana_speed = 10
speed_increase = 1
weights_per_level = 10
banana_pad_top = 40
banana_pad_side = 20

Listing 29-3.  The Squish Game Objects (objects.py)

import pygame, config, os
from random import randrange

"This module contains the game objects of the Squish game."

class SquishSprite(pygame.sprite.Sprite):

 """
 Generic superclass for all sprites in Squish. The constructor
 takes care of loading an image, setting up the sprite rect, and
 the area within which it is allowed to move. That area is governed
 by the screen size and the margin.
 """

 def __init__(self, image):
 super().__init__()
 self.image = pygame.image.load(image).convert()
 self.rect = self.image.get_rect()
 screen = pygame.display.get_surface()
 shrink = -config.margin * 2
 self.area = screen.get_rect().inflate(shrink, shrink)

class Weight(SquishSprite):

 """
 A falling weight. It uses the SquishSprite constructor to set up
 its weight image, and will fall with a speed given as a parameter
 to its constructor.
 """

 def __init__(self, speed):
 super().__init__(config.weight_image)
 self.speed = speed
 self.reset()

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

484

 def reset(self):
 """
 Move the weight to the top of the screen (just out of sight)
 and place it at a random horizontal position.
 """
 x = randrange(self.area.left, self.area.right)
 self.rect.midbottom = x, 0

 def update(self):
 """
 Move the weight vertically (downwards) a distance
 corresponding to its speed. Also set the landed attribute
 according to whether it has reached the bottom of the screen.
 """
 self.rect.top += self.speed
 self.landed = self.rect.top >= self.area.bottom

class Banana(SquishSprite):

 """
 A desperate banana. It uses the SquishSprite constructor to set up
 its banana image, and will stay near the bottom of the screen,
 with its horizontal position governed by the current mouse
 position (within certain limits).
 """

 def __init__(self):
 super().__init__(config.banana_image)
 self.rect.bottom = self.area.bottom
 # These paddings represent parts of the image where there is
 # no banana. If a weight moves into these areas, it doesn't
 # constitute a hit (or, rather, a squish):
 self.pad_top = config.banana_pad_top
 self.pad_side = config.banana_pad_side

 def update(self):
 """
 Set the Banana's center x-coordinate to the current mouse
 x-coordinate, and then use the rect method clamp to ensure
 that the Banana stays within its allowed range of motion.
 """
 self.rect.centerx = pygame.mouse.get_pos()[0]
 self.rect = self.rect.clamp(self.area)

 def touches(self, other):
 """
 Determines whether the banana touches another sprite (e.g., a
 Weight). Instead of just using the rect method colliderect, a
 new rectangle is first calculated (using the rect method
 inflate with the side and top paddings) that does not include

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

485

 the 'empty' areas on the top and sides of the banana.
 """
 # Deflate the bounds with the proper padding:
 bounds = self.rect.inflate(-self.pad_side, -self.pad_top)
 # Move the bounds so they are placed at the bottom of the Banana:
 bounds.bottom = self.rect.bottom
 # Check whether the bounds intersect with the other object's rect:
 return bounds.colliderect(other.rect)

Listing 29-4.  The Main Game Module (squish.py)

import os, sys, pygame
from pygame.locals import *
import objects, config

"This module contains the main game logic of the Squish game."

class State:

 """
 A generic game state class that can handle events and display
 itself on a given surface.
 """

 def handle(self, event):
 """
 Default event handling only deals with quitting.
 """
 if event.type == QUIT:
 sys.exit()
 if event.type == KEYDOWN and event.key == K_ESCAPE:
 sys.exit()

 def first_display(self, screen):
 """
 Used to display the State for the first time. Fills the screen
 with the background color.
 """
 screen.fill(config.background_color)
 # Remember to call flip, to make the changes visible:
 pygame.display.flip()

 def display(self, screen):
 """
 Used to display the State after it has already been displayed
 once. The default behavior is to do nothing.
 """
 pass

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

486

class Level(State):
 """
 A game level. Takes care of counting how many weights have been
 dropped, moving the sprites around, and other tasks relating to
 game logic.
 """

 def __init__(self, number=1):
 self.number = number
 # How many weights remain to dodge in this level?
 self.remaining = config.weights_per_level

 speed = config.drop_speed
 # One speed_increase added for each level above 1:
 speed += (self.number-1) * config.speed_increase
 # Create the weight and banana:
 self.weight = objects.Weight(speed)
 self.banana = objects.Banana()
 both = self.weight, self.banana # This could contain more sprites...
 self.sprites = pygame.sprite.RenderUpdates(both)

 def update(self, game):
 "Updates the game state from the previous frame."
 # Update all sprites:
 self.sprites.update()
 # If the banana touches the weight, tell the game to switch to
 # a GameOver state:
 if self.banana.touches(self.weight):
 game.next_state = GameOver()
 # Otherwise, if the weight has landed, reset it. If all the
 # weights of this level have been dodged, tell the game to
 # switch to a LevelCleared state:
 elif self.weight.landed:
 self.weight.reset()
 self.remaining -= 1
 if self.remaining == 0:
 game.next_state = LevelCleared(self.number)

 def display(self, screen):
 """
 Displays the state after the first display (which simply wipes
 the screen). As opposed to firstDisplay, this method uses
 pygame.display.update with a list of rectangles that need to
 be updated, supplied from self.sprites.draw.
 """
 screen.fill(config.background_color)
 updates = self.sprites.draw(screen)
 pygame.display.update(updates)

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

487

class Paused(State):
 """
 A simple, paused game state, which may be broken out of by pressing
 either a keyboard key or the mouse button.
 """

 finished = 0 # Has the user ended the pause?
 image = None # Set this to a file name if you want an image
 text = '' # Set this to some informative text

 def handle(self, event):
 """
 Handles events by delegating to State (which handles quitting
 in general) and by reacting to key presses and mouse
 clicks. If a key is pressed or the mouse is clicked,
 self.finished is set to true.
 """
 State.handle(self, event)
 if event.type in [MOUSEBUTTONDOWN, KEYDOWN]:
 self.finished = 1

 def update(self, game):
 """
 Update the level. If a key has been pressed or the mouse has
 been clicked (i.e., self.finished is true), tell the game to
 move to the state represented by self.next_state() (should be
 implemented by subclasses).
 """
 if self.finished:
 game.next_state = self.next_state()

 def first_display(self, screen):
 """
 The first time the Paused state is displayed, draw the image
 (if any) and render the text.
 """
 # First, clear the screen by filling it with the background color:
 screen.fill(config.background_color)

 # Create a Font object with the default appearance, and specified size:
 font = pygame.font.Font(None, config.font_size)

 # Get the lines of text in self.text, ignoring empty lines at
 # the top or bottom:
 lines = self.text.strip().splitlines()

 # Calculate the height of the text (using font.get_linesize()
 # to get the height of each line of text):
 height = len(lines) * font.get_linesize()

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

488

 # Calculate the placement of the text (centered on the screen):
 center, top = screen.get_rect().center
 top -= height // 2

 # If there is an image to display...
 if self.image:
 # load it:
 image = pygame.image.load(self.image).convert()
 # get its rect:
 r = image.get_rect()
 # move the text down by half the image height:
 top += r.height // 2
 # place the image 20 pixels above the text:
 r.midbottom = center, top - 20
 # blit the image to the screen:
 screen.blit(image, r)

 antialias = 1 # Smooth the text
 black = 0, 0, 0 # Render it as black

 # Render all the lines, starting at the calculated top, and
 # move down font.get_linesize() pixels for each line:
 for line in lines:
 text = font.render(line.strip(), antialias, black)
 r = text.get_rect()
 r.midtop = center, top
 screen.blit(text, r)
 top += font.get_linesize()

 # Display all the changes:
 pygame.display.flip()

class Info(Paused):

 """
 A simple paused state that displays some information about the
 game. It is followed by a Level state (the first level).
 """

 next_state = Level
 text = '''
 In this game you are a banana,
 trying to survive a course in
 self-defense against fruit, where the
 participants will "defend" themselves
 against you with a 16 ton weight.'''

class StartUp(Paused):

 """
 A paused state that displays a splash image and a welcome
 message. It is followed by an Info state.
 """

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

489

 next_state = Info
 image = config.splash_image
 text = '''
 Welcome to Squish,
 the game of Fruit Self-Defense'''

class LevelCleared(Paused):
 """
 A paused state that informs the user that he or she has cleared a
 given level. It is followed by the next level state.
 """

 def __init__(self, number):
 self.number = number
 self.text = '''Level {} cleared
 Click to start next level'''.format(self.number)

 def next_state(self):
 return Level(self.number + 1)

class GameOver(Paused):

 """
 A state that informs the user that he or she has lost the
 game. It is followed by the first level.
 """

 next_state = Level
 text = '''
 Game Over
 Click to Restart, Esc to Quit'''

class Game:

 """
 A game object that takes care of the main event loop, including
 changing between the different game states.
 """

 def __init__(self, *args):
 # Get the directory where the game and the images are located:
 path = os.path.abspath(args[0])
 dir = os.path.split(path)[0]
 # Move to that directory (so that the image files may be
 # opened later on):
 os.chdir(dir)
 # Start with no state:
 self.state = None
 # Move to StartUp in the first event loop iteration:
 self.next_state = StartUp()

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

490

 def run(self):
 """
 This method sets things in motion. It performs some vital
 initialization tasks, and enters the main event loop.
 """
 pygame.init() # This is needed to initialize all the pygame modules

 # Decide whether to display the game in a window or to use the
 # full screen:
 flag = 0 # Default (window) mode

 if config.full_screen:
 flag = FULLSCREEN # Full screen mode
 screen_size = config.screen_size
 screen = pygame.display.set_mode(screen_size, flag)

 pygame.display.set_caption('Fruit Self Defense')
 pygame.mouse.set_visible(False)

 # The main loop:
 while True:
 # (1) If nextState has been changed, move to the new state, and
 # display it (for the first time):
 if self.state != self.next_state:
 self.state = self.next_state
 self.state.first_display(screen)
 # (2) Delegate the event handling to the current state:
 for event in pygame.event.get():
 self.state.handle(event)
 # (3) Update the current state:
 self.state.update(self)
 # (4) Display the current state:
 self.state.display(screen)

if __name__ == '__main__':
 game = Game(*sys.argv)
 game.run()

Some screenshots of the game are shown in Figures 29-3 through 29-6.

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

491

Figure 29-3.  The Squish opening screen

Figure 29-4.  A banana about to be squished

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

492

Figure 29-5.  The “level cleared” screen

Figure 29-6.  The “game over” screen

Chapter 29 ■ Project 10: Do-It-Yourself Arcade Game

493

Further Exploration
Here are some ideas for how you can improve the game:

•	 Add sounds to it.

•	 Keep track of the score. Each weight dodged could be worth 16 points, for example.
How about keeping a high-score file? Or even an online high-score server (using
asyncore or XML-RPC, as discussed in Chapters 24 and 27, respectively)?

•	 Make more objects fall simultaneously.

•	 Flip the logic around: make the player try to be hit rather than avoiding it, as in Peter
Goode’s old Memotech game Egg Catcher, the main inspiration for Squish.

•	 Give the player more than one “life.”

•	 Create a stand-alone executable of your game. (See Chapter 18 for details.)

For a much more elaborate (and extremely entertaining) example of Pygame programming, check out
the SolarWolf game by Pete Shinners, the Pygame maintainer (http://www.pygame.org/shredwheat/
solarwolf). You can find plenty of information and several other games at the Pygame web site. If playing
with Pygame gets you hooked on game development, you might want to check out web sites like
http://www.gamedev.net or http://gamedev.stackexchange.com. A web search should give you plenty of
other similar sites.

What Now?
Well, this is it. You have finished the last project. If you take stock of what you have accomplished (assuming
that you have followed all the projects), you should be rightfully impressed with yourself. The breadth of the
topics presented has given you a taste of the possibilities that await you in the world of Python programming.
I hope you have enjoyed the trip this far, and I wish you good luck on your continued journey as a Python
programmer.

http://dx.doi.org/10.1007/978-1-4842-0028-5_24
http://dx.doi.org/10.1007/978-1-4842-0028-5_27
http://dx.doi.org/10.1007/978-1-4842-0028-5_18
http://www.pygame.org/
http://www.gamedev.net/
http://gamedev.stackexchange.com/

495© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5

APPENDIX A

The Short Version

This is a minimal introduction to Python, based on my web tutorial, “Instant Python.” It targets programmers
who already know a language or two but who want to get up to speed with Python. For information on
downloading and executing the Python interpreter, see Chapter 1.

The Basics
To get a basic feel for the Python language, think of it as pseudocode, because that’s pretty close to the truth.
Variables don’t have types, so you don’t need to declare them. They appear when you assign to them and
disappear when you don’t use them anymore. Assignment is done with the = operator, like this:

x = 42

Note that equality is tested by the == operator. You can assign several variables at once, like this:

x,y,z = 1,2,3
first, second = second, first
a = b = 123

Blocks are indicated through indentation and only through indentation. (No begin/end or braces.) The
following are some common control structures:

if x < 5 or (x > 10 and x < 20):
 print("The value is OK.")

if x < 5 or 10 < x < 20:
 print("The value is OK.")

for i in [1, 2, 3, 4, 5]:
 print("This is iteration number", i)

x = 10
while x >= 0:
 print("x is still not negative.")
 x = x - 1

The first two examples are equivalent.

http://dx.doi.org/10.1007/978-1-4842-0028-5_1

APPENDIX A ■ The Short Version

496

The index variable given in the for loop iterates through the elements of a list1 (written with brackets, as
in the example). To make an “ordinary” for loop (that is, a counting loop), use the built-in function range.

Print out the values from 0 to 99, inclusive
for value in range(100):
 print(value)

The line beginning with # is a comment and is ignored by the interpreter.
Now you know enough (in theory) to implement any algorithm in Python. Let’s add some basic user

interaction. To get input from the user (from a text prompt), use the built-in function input.

x = float(input("Please enter a number:"))
print("The square of that number is", x * x)

The input function displays the (optional) prompt given and lets the user enter a string. In this case, we were
expecting a number and so converted the input to a floating-point number using float.

So, you have control structures, input, and output covered—now you need some snazzy data structures.
The most important ones are lists and dictionaries. Lists are written with brackets and can (naturally) be nested.

name = ["Cleese", "John"]
x = [[1, 2, 3], [y, z], [[[]]]]

One of the nice things about lists is that you can access their elements separately or in groups, through
indexing and slicing. Indexing is done (as in many other languages) by writing the index in brackets after the
list. (Note that the first element has index 0.)

print(name[1], name[0]) # Prints "John Cleese"
name[0] = "Smith"

Slicing is almost like indexing, except that you indicate both the start and stop index of the result, with a
colon (:) separating them.

x = ["SPAM", "SPAM", "SPAM", "SPAM", "SPAM", "eggs", "and", "SPAM"]
print(x[5:7]) # Prints the list ["eggs", "and"]

Notice that the end is noninclusive. If one of the indices is dropped, it is assumed that you want everything
in that direction. In other words, the slice x[:3] means “every element from the beginning of x up to element
3, noninclusive” (well, element 3 is actually the fourth element, because the counting starts at 0). The slice
x[3:] would, on the other hand, mean “every element in x, starting at element 3 (inclusive) up to, and
including, the last one.” For really interesting results, you can use negative numbers, too: x[-3] is the third
element from the end of the list.

Now then, what about dictionaries? To put it simply, they are like lists, except that their contents aren’t
ordered. How do you index them then? Well, every element has a key, or a name, which is used to look up the
element, just as in a real dictionary. The following example demonstrates the syntax used to create dictionaries:

phone = {"Alice" : 23452532, "Boris" : 252336,
 "Clarice" : 2352525, "Doris" : 23624643 }

person = {'first name': "Robin", 'last name': "Hood",
 'occupation': "Scoundrel" }

1Or any other iterable object, actually.

APPENDIX A ■ The Short Version

497

Now, to get person’s occupation, you use the expression person["occupation"]. If you wanted to change
the person’s last name, you could write this:

person['last name'] = "of Locksley"

Simple, isn’t it? Like lists, dictionaries can hold other dictionaries, or lists, for that matter. And naturally, lists
can hold dictionaries, too. That way, you can easily make some quite advanced data structures.

Functions
Our next step is abstraction. You want to give a name to a piece of code and call it with a couple of
parameters. In other words, you want to define a function (also called a procedure). That’s easy. Use the
keyword def, as follows:

def square(x):
 return x * x

print(square(2)) # Prints out 4

The return statement is used to return a value from the function.
When you pass a parameter to a function, you bind the parameter to the value, thus creating a new

reference. This means that you can modify the original value directly inside the function, but if you make the
parameter name refer to something else (rebind it), that change won’t affect the original. This works just like
in Java, for example. Let’s take a look at an example:

def change(x):
 x[1] = 4

y = [1, 2, 3]
change(y)
print(y) # Prints out [1,4,3]

As you can see, the original list is passed in, and if the function modifies it, these modifications carry over
to the place where the function was called. Note the behavior in the following example, however, where the
function body rebinds the parameter:

def nochange(x):
 x = 0

y = 1
nochange(y)
print(y) # Prints out 1

Why doesn’t y change now? Because you don’t change the value! The value that is passed in is the number 1,
and you can’t change a number in the same way that you change a list. The number 1 is (and will always be)
the number 1. What the example does change is what the parameter x refers to, and this does not carry over
to the calling environment.

Python has all kinds of nifty things such as named arguments and default arguments and can handle a
variable number of arguments to a single function. For more information about this, see Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-0028-5_6

APPENDIX A ■ The Short Version

498

If you know how to use functions in general, what I’ve told you so far is basically what you need to know
about them in Python.

It might be useful to know, however, that functions are values in Python. So if you have a function such
as square, you could do something like the following:

queeble = square
print(queeble(2)) # Prints out 4

To call a function without arguments, you must remember to write doit() and not doit. The latter, as
shown, only returns the function itself, as a value. This goes for methods in objects, too. Methods are
described in the next section.

Objects and Stuff . . .
I assume you know how object-oriented programming works. Otherwise, this section might not make much
sense. No problem—start playing without the objects, or check out Chapter 7.

In Python, you define classes with the (surprise!) class keyword, as follows:

class Basket:

 # Always remember the *self* argument
 def __init__(self, contents=None):
 self.contents = contents or []

 def add(self, element):
 self.contents.append(element)

 def print_me(self):
 result = ""
 for element in self.contents:
 result = result + " " + repr(element)
 print("Contains:", result)

Several things are worth noting in this example.

•	 Methods are called like this: object.method(arg1, arg2).

•	 Some arguments can be optional and given a default value (as mentioned in the
previous section on functions). This is done by writing the definition like this:

def spam(age=32): ...

•	 Here, spam can be called with one or zero parameters. If it’s called without any
parameters, age will have the default value of 32.

•	 repr converts an object to its string representation. (So if element contains the
number 1, then repr(element) is the same as "1", whereas 'element' is a literal
string.)

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

APPENDIX A ■ The Short Version

499

No methods or member variables (attributes) are protected (or private or the like) in Python. Encapsulation
is pretty much a matter of programming style. (If you really need it, there are naming conventions that will
allow some privacy, such as prefixing a name with a single or double underscore.)

Now, about that short-circuit logic . . .
All values in Python can be used as logic values. Some of the more empty ones (such as False, [], 0, "",

and None) represent logical falsity; most other values (such as True, [0], 1, and "Hello, world") represent
logical truth.

Logical expressions such as a and b are evaluated like this:

•	 Check if a is true.

•	 If it is not, then simply return it.

•	 If it is, then simply return b (which will represent the truth value of the expression).

The corresponding logic for a or b is this:

•	 If a is true, then return it.

•	 If it isn’t, then return b.

This short-circuit mechanism enables you to use and and or like the Boolean operators they are supposed to
implement, but it also enables you to write short and sweet little conditional expressions. For example, this
statement:

if a:
 print(a)
else:
 print(b)

could instead be written like this:

print(a or b)

Actually, this is somewhat of a Python idiom, so you might as well get used to it.

■■ Note  Python also has also actual conditional expressions, so you can write this:

print(a if a else b)

The Basket constructor (Basket.__init__) in the previous example uses this strategy in handling default
parameters. The argument contents has a default value of None (which is, among other things, false);
therefore, to check if it had a value, you could write this:

if contents:
 self.contents = contents
else:
 self.contents = []

Instead, the constructor uses this simple statement:

self.contents = contents or []

APPENDIX A ■ The Short Version

500

Why don’t you give it the default value of [] in the first place? Because of the way Python works, this would
give all the Basket instances the same empty list as default contents. As soon as one of them started to fill
up, they all would contain the same elements, and the default would not be empty anymore. To learn more
about this, see the discussion about the difference between identity and equality in Chapter 5.

■■ Note  When using None as a placeholder as done in the Basket.__init__ method, using contents is
None as the condition is safer than simply checking the argument’s Boolean value. This will allow you to pass in
a false value such as an empty list of your own (to which you could keep a reference outside the object).

If you would like to use an empty list as the default value, you can avoid the problem of sharing this among
instances by doing the following:

def __init__(self, contents=[]):
 self.contents = contents[:]

Can you guess how this works? Instead of using the same empty list everywhere, you use the expression
contents[:] to make a copy. (You simply slice the entire thing.)

So, to actually make a Basket and to use it (to call some methods on it), you would do something like this:

b = Basket(['apple', 'orange'])
b.add("lemon")
b.print_me()

This would print out the contents of the Basket: an apple, an orange, and a lemon.
There are magic methods other than __init__. One such method is __str__, which defines how the

object wants to look if it is treated like a string. You could use this in the basket instead of print_me.

def __str__(self):
 result = ""
 for element in self.contents:
 result = result + " " + repr(element)
 return "Contains: " + result

Now, if you wanted to print the basket b, you could just use this:

print(b)

Cool, huh?
Subclassing works like this:

class SpamBasket(Basket):
 # ...

Python allows multiple inheritance, so you can have several superclasses in the parentheses, separated by
commas. Classes are instantiated like this: x = Basket(). Constructors are, as I said, made by defining the
special member function __init__.

http://dx.doi.org/10.1007/978-1-4842-0028-5_5

APPENDIX A ■ The Short Version

501

Let’s say that SpamBasket had a constructor __init__(self, type). Then you could make a spam
basket like this: y = SpamBasket("apples").

If in the constructor of SpamBasket, you needed to call the constructor of one or more superclasses, you
could call it like this: Basket.__init__(self). Note that in addition to supplying the ordinary parameters,
you must explicitly supply self, because the superclass __init__ doesn’t know which instance it is dealing
with. A better (and slightly more magical) alternative would be super().__init__().

For more about the wonders of object-oriented programming in Python, see Chapter 7.

Some Loose Ends
Here, I’ll quickly review a few other useful things before ending this appendix. Most useful functions and
classes are put in modules, which are really text files with the file name extension .py that contain Python
code. You can import these and use them in your own programs. For example, to use the function sqrt from
the standard module math, you can do either this:

import math
x = math.sqrt(y)

or this:

from math import sqrt
x = sqrt(y)

For more information on the standard library modules, see Chapter 10.
All the code in the module/script is run when it is imported. If you want your program to be both an

importable module and a runnable program, you might want to add something like this at the end of it.

if __name__ == "__main__": main()

This is a magic way of saying that if this module is run as an executable script (that is, it is not being imported
into another script), then the function main should be called. Of course, you could do anything after the
colon there.

And for those of you who want to make an executable script in UNIX, use the following first line to make
it run by itself:

#!/usr/bin/env python

Finally, a brief mention of an important concept: exceptions. Some operations (such as dividing something
by zero or reading from a nonexistent file) produce an error condition or exception. You can even make your
own exceptions and raise them at the appropriate times.

If nothing is done about the exception, your program ends and prints out an error message. You can
avoid this with a try/except statement, as in this example:

def safe_division(a, b):
 try:
 return a/b
 except ZeroDivisionError: pass

http://dx.doi.org/10.1007/978-1-4842-0028-5_7
http://dx.doi.org/10.1007/978-1-4842-0028-5_10

APPENDIX A ■ The Short Version

502

ZeroDivisionError is a standard exception. In this case, you could have checked if b was zero, but in many
cases, that strategy is not feasible. And besides, if you removed the try/except statement in safe_division,
thereby making it a risky function to call (called something like unsafe_division), you could still do the
following:

try:
 unsafe_division(a, b)
except ZeroDivisionError:
 print("Something was divided by zero in unsafe_division")

In cases in which you typically would not have a specific problem but it might occur, using exceptions
enables you to avoid costly testing and so forth.

Well, that’s it. Hope you learned something. Now go and play. And remember the Python motto of
learning: use the source (which basically means read all the code you can get your hands on).

503© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5

APPENDIX B

Python Reference

This is not a full Python reference by far—you can find that in the standard Python documentation
(http://python.org/doc/ref). Rather, this is a handy “cheat sheet” that can be useful for refreshing your
memory as you start out programming in Python.

Expressions
This section summarizes Python expressions. Table B-1 lists the most important basic (literal) values in
Python; Table B-2 lists the Python operators, along with their precedence (those with high precedence are
evaluated before those with low precedence); Table B-3 describes some of the most important built-in
functions; Tables B-4 through B-6 describe the list methods, dictionary methods, and string methods,
respectively.1

1Though commonly referred to as built-in functions, some of the entries in Table B-3 are actually classes.

Table B-1.  Basic (Literal) Values

Type Description Syntax Samples

Integer Numbers without a fractional part 42

Float Numbers with a fractional part 42.5, 42.5e-2

Complex Sum of a real (integer or float) and imaginary number 38 + 4j, 42j

String An immutable sequence of characters 'foo', "bar", """baz""", r'\n'

http://python.org/doc/ref)

APPENDIX B ■ Python Reference

504

Table B-2.  Operators

Operator Description Precedence

lambda Lambda expression 1

… if … else Conditional expression 2

or Logical or 3

and Logical and 4

not Logical negation 5

in Membership test 6

not in Negative membership test 6

is Identity test 6

is not Negative identity test 6

< Less than 6

> Greater than 6

<= Less than or equal to 6

>= Greater than or equal to 6

== Equal to 6

!= Not equal to 6

| Bitwise or 7

^ Bitwise exclusive or 8

& Bitwise and 9

<< Left shift 10

>> Right shift 10

+ Addition 11

- Subtraction 11

* Multiplication 12

@ Matrix multiplication 12

/ Division 12

// Integer division 12

% Remainder 12

+ Unary identity 13

- Unary negation 13

~ Bitwise complement 13

** Exponentiation 14

x.attribute Attribute reference 15

x[index] Item access 15

x[index1:index2[:index3]] Slicing 15

f(args…) Function call 15

(…) Parenthesized expression or tuple display 16

[…] List display 16

{key:value, …} Dictionary display 16

APPENDIX B ■ Python Reference

505

Table B-3.  Some Important Built-in Functions

Function Description

abs(number) Returns the absolute value of a number.

all(iterable) Returns True if all the elements of iterable are true;
otherwise, it returns False.

any(iterable) Returns True if any of the elements of iterable are
true; otherwise, it returns False.

ascii(object) Works like repr, but escapes non-ASCII characters.

bin(integer) Converts an integer to a binary literal, in the form of
a string.

bool(x) Interprets x as a Boolean value, returning
True or False.

bytearray([string, [encoding[, errors]]]) Creates a byte array, optionally from a given string,
with the specified encoding and error handling.

bytes([string, [encoding[, errors]]]) Similar to bytearray, but returns an immutable
bytes object.

callable(object) Checks whether an object is callable.

chr(number) Returns a character whose Unicode code point is the
given number.

classmethod(func) Creates a class method from an instance method
(see Chapter 7).

complex(real[, imag]) Returns a complex number with the given real (and,
optionally, imaginary) component.

delattr(object, name) Deletes the given attribute from the given object.

dict([mapping-or-sequence]) Constructs a dictionary, optionally from another
mapping or a list of (key, value) pairs. May also be
called with keyword arguments.

dir([object]) Lists (most of) the names in the currently visible
scopes, or optionally (most of) the attributes of the
given object.

divmod(a, b) Returns (a // b, a % b) (with some special rules
for floats).

enumerate(iterable) Iterates over (index, item) pairs, for all items in
iterable. Can supply a keyword argument start, to
start somewhere other than zero.

eval(string[, globals[, locals]]) Evaluates a string containing an expression,
optionally in a given global and local scope.

filter(function, sequence) Returns a list of the elements from the given
sequence for which function returns true.

float(object) Converts a string or number to a float.

(continued)

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

APPENDIX B ■ Python Reference

506

Table B-3.  (continued)

Function Description

format(value[, format_spec]) Returns a formatted version of the given value, in the
form of a string. The specification works the same
way as the format string method.

frozenset([iterable]) Creates a set that is immutable, which means it can
be added to other sets.

getattr(object, name[, default]) Returns the value of the named attribute of the given
object, optionally with a given default value.

globals() Returns a dictionary representing the current global
scope.

hasattr(object, name) Checks whether the given object has the named
attribute.

help([object]) Invokes the built-in help system, or prints a help
message about the given object.

hex(number) Converts a number to a hexadecimal string.

id(object) Returns the unique ID for the given object.

input([prompt]) Returns data input by the user as a string, optionally
using a given prompt.

int(object[, radix]) Converts a string (optionally with a given radix) or
number to an integer.

isinstance(object, classinfo) Checks whether the given object is an instance of
the given classinfo value, which may be a class
object, a type object, or a tuple of class and type
objects.

issubclass(class1, class2) Checks whether class1 is a subclass of class2
(every class is a subclass of itself).

iter(object[, sentinel]) Returns an iterator object, which is
object.__iter__(), an iterator constructed for
iterating a sequence (if object supports __getitem__),
or, if sentinel is supplied, an iterator that keeps calling
object in each iteration until sentinel is returned.

len(object) Returns the length (number of items) of the given
object.

list([sequence]) Constructs a list, optionally with the same items as
the supplied sequence.

locals() Returns a dictionary representing the current local
scope (do not modify this dictionary).

map(function, sequence, …) Creates a list consisting of the values returned by the
given function when applying it to the items of the
supplied sequence(s).

(continued)

APPENDIX B ■ Python Reference

507

Table B-3.  (continued)

Function Description

max(object1, [object2, …]) If object1 is a nonempty sequence, the largest
element is returned; otherwise, the largest of the
supplied arguments (object1, object2, . . .) is
returned.

min(object1, [object2, …]) If object1 is a nonempty sequence, the smallest
element is returned; otherwise, the smallest of
the supplied arguments (object1, object2, . . .) is
returned.

next(iterator[, default]) Returns the value of iterator.__next__(),
optionally providing a default if the iterator is
exhausted.

object() Returns an instance of object, the base class for all
(new-style) classes.

oct(number) Converts an integer number to an octal string.

open(filename[, mode[, bufsize]]) Opens a file and returns a file object. (Has additional
optional arguments, e.g., for encoding and error
handling.)

ord(char) Returns the Unicode code point of a single character.

pow(x, y[, z]) Returns x to the power of y, optionally modulo z.

print(x, …) Print out a line containing zero or more arguments
to standard output, separated by spaces. This
behavior may be adjusted with the keyword
arguments sep, end, file, and flush.

property([fget[, fset[, fdel[, doc]]]]) Creates a property from a set of accessors (see
Chapter 9).

range([start,]stop[, step]) Returns a numeric range (a form of sequence)
with the given start (inclusive, default 0), stop
(exclusive), and step (default 1).

repr(object) Returns a string representation of the object, often
usable as an argument to eval.

reversed(sequence) Returns a reverse iterator over the sequence.

round(float[, n]) Rounds off the given float to n digits after the
decimal point (default zero). For detailed rounding
rules, consult the official documentation.

set([iterable]) Returns a set whose elements are taken from
iterable (if given).

setattr(object, name, value) Sets the named attribute of the given object to the
given value.

sorted(iterable[, cmp][, key][, reverse]) Returns a new sorted list from the items in iterable.
Optional parameters are the same as for the list
method sort.

(continued)

http://dx.doi.org/10.1007/978-1-4842-0028-5_9

APPENDIX B ■ Python Reference

508

Table B-3.  (continued)

Function Description

staticmethod(func) Creates a static (class) method from an instance
method (see Chapter 7).

str(object) Returns a nicely formatted string representation of
the given object.

sum(seq[, start]) Returns the sum of a sequence of numbers, added to
the optional parameter start (default 0).

super([type[, obj/type]]) Returns a proxy that delegates method calls to the
superclass.

tuple([sequence]) Constructs a tuple, optionally with the same items as
the supplied sequence.

type(object) Returns the type of the given object.

type(name, bases, dict) Returns a new type object with the given name,
bases, and scope.

vars([object]) Returns a dictionary representing the local scope,
or a dictionary corresponding to the attributes
of the given object (do not modify the returned
dictionary).

zip(sequence1, …) Returns an iterator of tuples, where each tuple
contains an item from each of the supplied
sequences. The returned list has the same length as
the shortest of the supplied sequences.

Table B-4.  List Methods

Method Description

aList.append(obj) Equivalent to aList[len(aList):len(aList)] = [obj].

aList.clear() Removes all elements from aList.

aList.count(obj) Returns the number of indices i for which aList[i] == obj.

aList.copy() Returns a copy of aList. Note that this is a shallow copy, so the elements
are not copied.

aList.extend(sequence) Equivalent to aList[len(aList):len(aList)] = sequence.

aList.index(obj) Returns the smallest i for which aList[i] == obj (or raises a
ValueError if no such i exists).

aList.insert(index, obj) Equivalent to aList[index:index] = [obj] if index >= 0; if index < 0,
object is prepended to the list.

aList.pop([index]) Removes and returns the item with the given index (default –1).

aList.remove(obj) Equivalent to del aList[aList.index(obj)].

aList.reverse() Reverses the items of aList in place.

aList.sort([cmp][, key][,
reverse])

Sorts the items of aList in place (stable sorting). Can be customized by
supplying a comparison function, cmp; a key function, key, which will
create the keys for the sorting); and a reverse flag (a Boolean value).

http://dx.doi.org/10.1007/978-1-4842-0028-5_7

APPENDIX B ■ Python Reference

509

Table B-5.  Dictionary Methods

Method Description

aDict.clear() Removes all the items of aDict.

aDict.copy() Returns a copy of aDict.

aDict.fromkeys(seq[, val]) Returns a dictionary with keys from seq and
values set to val (default None). May be called
directly on the dictionary type, dict, as a class
method.

aDict.get(key[, default]) Returns aDict[key] if it exists; otherwise, it
returns the given default value (default None).

aDict.items() Returns an iterator (actually, a view) of (key,
value) pairs representing the items of aDict.

aDict.iterkeys() Returns an iterable object over the keys of aDict.

aDict.keys() Returns an iterator (view) of the keys of aDict.

aDict.pop(key[, d]) Removes and returns the value corresponding to
the given key, or the given default, d.

aDict.popitem() Removes an arbitrary item from aDict and
returns it as a (key, value) pair.

aDict.setdefault(key[, default]) Returns aDict[key] if it exists; otherwise, it
returns the given default value (default None) and
binds aDict[key] to it.

aDict.update(other) For each item in other, adds the item to aDict
(possibly overwriting existing items). It can also
be called with arguments similar to the dictionary
constructor, aDict.

aDict.values() Returns an iterator (view) of the values in aDict
(possibly containing duplicates).

APPENDIX B ■ Python Reference

510

Table B-6.  String Methods

Method Description

string.capitalize() Returns a copy of the string in which the first
character is capitalized.

string.casefold() Returns a string that has been normalized in a
manner similar to simple lowercasing, more suitable
for case-insensitive comparisons between Unicode
strings.

string.center(width[, fillchar]) Returns a string of length max(len(string), width)
in which a copy of string is centered, padded with
fillchar (the default is space characters).

string.count(sub[, start[, end]]) Counts the occurrences of the substring
sub, optionally restricting the search to
string[start:end].

string.encode([encoding[, errors]]) Returns the encoded version of the string using
the given encoding, handling errors as specified by
errors ('strict', 'ignore', or 'replace', among
other possible values).

string.endswith(suffix[, start[, end]]) Checks whether string ends with suffix,
optionally restricting the matching with the given
indices start and end.

string.expandtabs([tabsize]) Returns a copy of the string in which tab characters
have been expanded using spaces, optionally using
the given tabsize (default 8).

string.find(sub[, start[, end]]) Returns the first index where the substring sub
is found, or –1 if no such index exists, optionally
restricting the search to string[start:end].

string.format(…) Implements the standard Python string formatting.
Brace-delimited fields in string are replaced by
the corresponding arguments, and the result is
returned.

string.format_map(mapping) Similar to using format with keyword arguments,
except the arguments are provided as a mapping.

string.index(sub[, start[, end]]) Returns the first index where the substring
sub is found, or raises a ValueError if no such
index exists, optionally restricting the search to
string[start:end].

string.isalnum() Checks whether the string consists of alphanumeric
characters.

string.isalpha() Checks whether the string consists of alphabetic
characters.

string.isdecimal() Checks whether the string consists of decimal
characters.

string.isdigit() Checks whether the string consists of digits.

(continued)

APPENDIX B ■ Python Reference

511

Table B-6.  (continued)

Method Description

string.isidentifier() Checks whether the string could be used as a Python
identifier.

string.islower() Checks whether all the case-based characters
(letters) of the string are lowercase.

string.isnumeric() Checks whether the string consists of numeric
characters.

string.isprintable() Checks whether the string consists of printable
characters.

string.isspace() Checks whether the string consists of whitespace.

string.istitle() Checks whether all the case-based characters in
the string following non-case-based letters are
uppercase and all other case-based characters are
lowercase.

string.isupper() Checks whether all the case-based characters of the
string are uppercase.

string.join(sequence) Returns a string in which the string elements of
sequence have been joined by string.

string.ljust(width[, fillchar]) Returns a string of length max(len(string), width)
in which a copy of string is left-justified, padded
with fillchar (the default is space characters).

string.lower() Returns a copy of the string in which all case-based
characters have been lowercased.

string.lstrip([chars]) Returns a copy of the string in which all chars have
been stripped from the beginning of the string (the
default is all whitespace characters, such as spaces,
tabs, and newlines).

str.maketrans(x[, y[, z]]) A static method on str. Constructs a translation
table for translate, using a mapping x from
characters or ordinals to Unicode ordinals (or None
for deletion). Can also be called with two strings
representing the from- and to-characters, and
possibly a third, with characters to be deleted.

string.partition(sep) Searches for sep in the string and returns (head,
sep, tail).

string.replace(old, new[, max]) Returns a copy of the string in which the
occurrences of old have been replaced with new,
optionally restricting the number of replacements
to max.

string.rfind(sub[, start[, end]]) Returns the last index where the substring sub
is found, or –1 if no such index exists, optionally
restricting the search to string[start:end].

(continued)

APPENDIX B ■ Python Reference

512

Table B-6.  (continued)

Method Description

string.rindex(sub[, start[, end]]) Returns the last index where the substring
sub is found, or raises a ValueError if no such
index exists, optionally restricting the search to
string[start:end].

string.rjust(width[, fillchar]) Returns a string of length max(len(string), width)
in which a copy of string is right-justified, padded
with fillchar (the default is space characters).

string.rpartition(sep) Same as partition, but searches from the right.

string.rstrip([chars]) Returns a copy of the string in which all chars have
been stripped from the end of the string (the default
is all whitespace characters, such as spaces, tabs,
and newlines).

string.rsplit([sep[, maxsplit]]) Same as split, but when using maxsplit, counts
from right to left.

string.split([sep[, maxsplit]]) Returns a list of all the words in the string, using
sep as the separator (splits on all whitespace if left
unspecified), optionally limiting the number of
splits to maxsplit.

string.splitlines([keepends]) Returns a list with all the lines in string, optionally
including the line breaks (if keepends is supplied
and is true).

string.startswith(prefix[, start[, end]]) Checks whether string starts with prefix,
optionally restricting the matching with the given
indices start and end.

string.strip([chars]) Returns a copy of the string in which all chars have
been stripped from the beginning and the end of the
string (the default is all whitespace characters, such
as spaces, tabs, and newlines).

string.swapcase() Returns a copy of the string in which all the case-
based characters have had their case swapped.

string.title() Returns a copy of the string in which all the words
are capitalized.

string.translate(table) Returns a copy of the string in which all characters
have been translated using table (constructed with
maketrans).

string.upper() Returns a copy of the string in which all the case-
based characters have been uppercased.

string.zfill(width) Pads string on the left with zeros to fill width (with
any initial + or - moved to the beginning).

APPENDIX B ■ Python Reference

513

Statements
This section gives you a quick summary of each of the statement types in Python.

Simple Statements
Simple statements consist of a single (logical) line.

Expression Statements
Expressions can be statements on their own. This is especially useful if the expression is a function call or a
documentation string.

Example:

"This module contains SPAM-related functions."

Assert Statements
Assert statements check whether a condition is true and raise an AssertionError (optionally with a supplied
error message) if it isn’t.

Example:

assert age >= 12, 'Children under the age of 12 are not allowed'

Assignment Statements
Assignment statements bind variables to values. Multiple variables may be assigned to simultaneously
(through sequence unpacking), and assignments may be chained.

Examples:

x = 42 # Simple assignment
name, age = 'Gumby', 60 # Sequence unpacking
x = y = z = 10 # Chained assignments

Augmented Assignment Statements
Assignments may be augmented by operators. The operator will then be applied to the existing value of the
variable and the new value, and the variable will be rebound to the result. If the original value is mutable, it
may be modified instead (with the variable staying bound to the original).

Examples:

x *= 2 # Doubles x
x += 5 # Adds 5 to x

APPENDIX B ■ Python Reference

514

The pass Statement
The pass statement is a “no-op,” which does nothing. It is useful as a placeholder, or as the only statement in
syntactically required blocks where you want no action to be performed.

Example:

try: x.name
except AttributeError: pass
else: print('Hello', x.name)

The del Statement
The del statement unbinds variables and attributes and removes parts (positions, slices, or slots) from data
structures (mappings or sequences). It cannot be used to delete values directly, because values are deleted
only through garbage collection.

Examples:

del x # Unbinds a variable
del seq[42] # Deletes a sequence element
del seq[42:] # Deletes a sequence slice
del map['foo'] # Deletes a mapping item

The return Statement
The return statement halts the execution of a function and returns a value. If no value is supplied, None is
returned.

Examples:

return # Returns None from the current function
return 42 # Returns 42 from the current function
return 1, 2, 3 # Returns (1, 2, 3) from the current function

The yield Statement
The yield statement temporarily halts the execution of a generator and yields a value. A generator is a form
of iterator and can be used in for loops, among other things.

Example:

yield 42 # Returns 42 from the current function

The raise Statement
The raise statement raises an exception. It may be used without any arguments (inside an except clause, to
re-raise the currently caught exception), with a subclass of Exception and an optional argument (in which
case, an instance is constructed) or with an instance of a subclass of Exception.

APPENDIX B ■ Python Reference

515

Examples:

raise # May only be used inside except clauses
raise IndexError
raise IndexError, 'index out of bounds'
raise IndexError('index out of bounds')

The break Statement
The break statement ends the immediately enclosing loop statement (for or while) and continues
execution immediately after that loop statement.

Example:

while True:
 line = file.readline()
 if not line: break
 print(line)

The continue Statement
The continue statement is similar to the break statement in that it halts the current iteration of the
immediately enclosing loop, but instead of ending the loop completely, it continues execution at the
beginning of the next iteration.

Example:

while True:
 line = file.readline()
 if not line: break
 if line.isspace(): continue
 print(line)

The import Statement
The import statement is used to import names (variables bound to functions, classes, or other values) from
an external module. This also covers from __future__ import … statements for features that will become
standard in future versions of Python.

Examples:

import math
from math import sqrt
from math import sqrt as squareroot
from math import *

APPENDIX B ■ Python Reference

516

The global Statement
The global statement is used to mark a variable as global. It is used in functions to allow statements in the
function body to rebind global variables. Using the global statement is generally considered poor style and
should be avoided whenever possible.

Example:

count = 1
def inc():
 global count
 count += 1

The nonlocal Statement
This is similar to the global statement but refers to an outer scope of an inner function (a closure). That is, if
you define a function inside another function and return it, this inner function may refer to—and modify—
variables from the outer function, provided they are marked as nonlocal.

Example:

def makeinc():
 count = 1
 def inc():
 nonlocal count
 count += 1
 return inc

Compound Statements
Compound statements contain groups (blocks) of other statements.

The if Statement
The if statement is used for conditional execution, and it may include elif and else clauses.

Example:

if x < 10:
 print('Less than ten')
elif 10 <= x < 20:
 print('Less than twenty')
else:
 print('Twenty or more')

APPENDIX B ■ Python Reference

517

The while Statement
The while statement is used for repeated execution (looping) while a given condition is true. It may include
an else clause (which is executed if the loop finishes normally, without any break or return statements, for
instance).

Example:

x = 1
while x < 100:
 x *= 2
print(x)

The for Statement
The for statement is used for repeated execution (looping) over the elements of sequences or other iterable
objects (objects having an __iter__ method that returns an iterator). It may include an else clause (which is
executed if the loop finishes normally, without any break or return statements, for instance).

Example:

for i in range(10, 0, -1):
 print(i)
print('Ignition!')

The try Statement
The try statement is used to enclose pieces of code where one or more known exceptions may occur and
enables your program to trap these exceptions and perform exception-handling code if an exception is
trapped. The try statement can combine several except clauses (handling exceptional circumstances) and
finally clauses (executed no matter what; useful for cleanup).

Example:

try:
 1 / 0
except ZeroDivisionError:
 print("Can't divide anything by zero.")
finally:
 print("Done trying to calculate 1 / 0")

The with Statement
The with statement is used to wrap a block of code using a so-called context manager, allowing the context
manager to perform some setup and cleanup actions. For example, files can be used as context managers,
and they will close themselves as part of the cleanup.

Example:

with open("somefile.txt") as myfile:
 dosomething(myfile)
The file will have been closed here

APPENDIX B ■ Python Reference

518

Function Definitions
Function definitions are used to create function objects and to bind global or local variables to these
function objects.

Example:

def double(x):
 return x * 2

Class Definitions
Class definitions are used to create class objects and to bind global or local variables to these class objects.

Example:

class Doubler:
 def __init__ (self, value):
 self.value = value
 def double(self):
 self.value *= 2

519© Magnus Lie Hetland 2017
M. L. Hetland, Beginning Python, DOI 10.1007/978-1-4842-0028-5

�       � A
Abstract base class, 144–146
Abstraction, 99, 102, 107–108
add function, 132
Algorithm, 2
and operator. See Boolean operators
Arcade game

goals, 476
implementation

falling weights
animation (weights.py), 479–480

game over screen, 492
level cleared screen, 492
main game module (squish.py), 485–490
Squish configuration file (config.py), 482
Squish game objects, 483–484
Squish opening screen, 491
squish.py file, 482
steps, 479
weights.py and weight.png, 481

preparations, 478
preparations weight and banana graphics, 478
pygame module, 476

pygame.display module, 476–477
pygame.font module, 477
pygame.image module, 478
pygame.locals module, 476
pygame.mouse module, 477
pygame.sprite module, 477

Arguments, 105, 152–153
print multiple, 71–72

Assert statements, 84, 513
Assignment statement, 513

augmented assignments, 75
chained assignments, 75
sequence unpacking, 73–74

Asynchronous I/O, 280–281
AttributeError, 150, 160
Attributes, 137
Augmented assignments, 75

�       � B
Basket constructor, 499
Binary search, 123–125
Blocking network

programming, 274
Blocks, 76, 154
Boolean function, 125
Boolean operators, 32, 83
Boolean values, 32, 76–77
Boost.Python, 326
Break statement, 89, 515
Built-in exceptions, 150
Built-in functions, 505–507
Bulletin board

database creation
MySQL, 437
PostgreSQL, 436
SQLite, 437

database structure, 436
implementation

CGI scripts, 438
Content-type string, 439
core functionality, 438
database-handling

code figured out, 439
edit script writing, 445–446
formatting code, 439
main page, 440
main script writing, 442–443
message composer, 448
message viewer, 448
save.cgi script, 446, 447
simple_main.cgi, 440–441
structuring web programs, 442
testing purposes, 439
view.cgi script, 443, 444

requirements, 435
tools, 436

bytearray, 22
Bytes, 20, 21

Index

■ INDEX

520

�       � C
C API, 330
Catching exceptions, 151
Catching object, 154
C extensions, 325–326
Chained assignments, 75
Character sets, 224
ChatServer class, 411–412
Class, 135

abstract base, 144–146
create new, 135–136
definitions, 135, 518
namespace, 139–140
subclass, 135
superclass, 135, 140

Client/server pair, 274
Client sockets, 274
Close method, 185
Closing files, 246
cmath and complex numbers, 10
Colon (:), 76
Comment, 14
Common Gateway Interface (CGI), 277

cgi module, 300
cgitb, 299
file permissions, 297
HTML forms, 301–302
pound bang line, 297
security risks, 298
web server, 296

Comparing incompatible types, 80
Comparison operators, 79–80
Compilation process

gcc, 329
SWIG, 330

Compiling extensions, 340
Comprehensions, 92–93
Conditional execution

elif clauses, 79
else clauses, 78
if statement, 78
nesting blocks, 79

Connections, Python DB API, 263
Constructors, 129

_ _init_ _, 165
init method, 164
overriding methods, 165–167
parameters, 164
super function, 167–169
unbound superclass constructor, 167

Content handler, 386
Context managers, 246
continue statement, 90
Conversion specifiers, 46

count method, 131
CounterList class, 173
ctypes module, 326
Cursors, Python DB API, 263
Cython, 325

�       � D
Data structure, 107–109
Decorators, 177
Default mode, 242
Defaults, 111–113
def statement. See Functions, definition
del statement, 94–95, 514
Dictionary, 107

database, 59
dict function, 60
methods, 87, 509

clear, 64
copy, 65
fromkeys, 65
get, 65, 67
items, 67
keys, 67
pop, 67
popitem, 68
setdefault, 68
update, 69
values, 69

operations, 61–62
string formatting, 63

Docstring, 103
doctest, 310–312

�       � E
Eight Queens problem

base case, 189
conflicts, 188
generators and backtracking, 186–187
prettyprint, 193
problem, 187
recursive case, 190
solutions, 192
state representation, 188

elif clauses, 79
else clauses, 78, 92
Encapsulation, 129, 133–134, 137
Environment variables, 201
Equality operator, 80–81
Error message, 149–152, 154
eval function, 97
Event handling, 256–257
except clause, 153–154, 156
Exceptions, 263

■ INDEX

521

built-in, 150
catching, 151
custom classes, 151
definition, 149
and functions, 158
raise statement, 150
with one block, 154
zen of, 158–160

exec function, 96
Exploring modules

_ _all_ _ variable, 203
dir function, 202
documentation, 204
help, 203
Python interpreter, 202
source code, 204–205

Expression statements, 513
Extensions

PyArg_ParseTuple, 333
SWIG and Cython, 332

�       � F
Factorial (of number), 122–123
Fibonacci numbers, 101–103
fibs function, 102–103
Fictitious function, 248
FileExistsError, 242
fileinput module, 208, 250
File-like object, 242
File(s)

closing files, 246
context managers, 246
file-like object, 242
iterating over file contents, 248
iterators, 250–251
modes, 241–242
modified text file, 248
objects, 242
opening files, 241–242
Piping Output, 244
random access, 245
reading and writing, 243
reading and writing lines, 245
standard streams, 243
somefile.txt, 247
streams, 242

File sharing, GUI
implementation

fetch method, 468
finished GUI client (guiclient.py), 470–472
ListableNode, 470
simple GUI client

(simple_guiclient.py), 468–469
preparations, 467

requirements, 467
tools, 467

File sharing, XML-RPC
client-server interaction, 451
implementation

_broadcast method, 456
client interface creation, 460
command, 458
file test.txt, 459
new node implementation

(server.py), 462–464
node controller interface (client.py), 464–465
raising exceptions, 461
register_instance method, 453
simple node, 453–458
SimpleXMLRPCServer class, 453, 455–456
validating file names, 461–464

peer-to-peer system, 451
preparation, 453
requirements, 452
standard library modules, 452

Filter class, 140–141
filterwarnings function, 160
Finally clause, 157
Flask, 303, 306
Food Database Query program, 270
Forking server, 279–280
for loops, 86, 91–93
Formal parameters, 105
for statement, 517
Foundations of Python Network Programming, 273
Friends and SocketServer, 278
Functions, 8–9, 23, 44, 137, 158

add, 132
definition, 103, 518
document, 103
eval, 97
exec, 96
fibs, 102
filter, 125
isinstance, 130
map, 125
return statement, 104
store, 109–110

�       � G
Garbage collection, 95
Generators

comprehension, 182
definition, 181
flatten generator, 186
generator-function and generator-iterator, 184
making, 181
methods, 184–185

■ INDEX

522

recursive, 182–183
simulating, 186

Geometry manager, 255
_ _getattr_ _ method, 178
Global variables, 118–120, 129, 262
Graphical user interfaces (GUIs)

elements, 254
event handling, 256–257
file sharing (see File sharing, GUI)
initial exploration, 254
layout, 253–254, 256
mechanisms, 253
object-oriented design, 258
text editor, 253–254, 257–258
Tkinter, 253–256, 258

�       � H
Handlers, 358
heapify function, 214
heappop function, 213
heapreplace function, 214
Heaps, 213
Hexadecimals and octals, 5

�       � I
Identity operator, 81
if statement, 78, 84, 151, 154, 516
Import something from module, 72–73
import statement, 515
in operator. See Membership operator
IndexError, 150
Infinite recursion, 121
Inheritance, 129, 134, 141, 172
Input from user, 7
Installation process, 1
Interfaces, 143
Interpreter, 2
Introspection, 143
IronPython, 324
is operator. See Identity operator
isinstance function, 130
Item access

sequences and mappings (see Sequences and
mappings protocol)

subclassing list, dict, and str, 172–173
Iteration

iterating over file contents
fictitious function, 248
fileinput, 250
file iterators, 250–251
one character (or byte) at time, 248–249
one line at time, 249

process, 248
reading everything, 249

numbered, 88
parallel, 87–88
reversed and sorted iteration, 89

Iterators
list constructor, 180
protocol, 179–180
sequences making, 180

_ _iter_ _ method, 179

�       � J
Jujitsu of programming, 343
Jython, 322–323

�       � K
KeyError, 150, 159
Keyword arguments, 46
Keyword parameters, 111–113

�       � L
Lambda expressions, 126
Layout, 256
Lazy evaluation, 84
LinePlot class, 380–381
LineReceiver class, 409
Linux system, 275
Lists

deleting elements, 34
function, 33
item assignments, 34
method, 508

append, 36
clear, 36
copy, 36
count, 37
extend, 37
index, 38
insert, 38
pop, 39
remove, 39
reverse, 40
sort, 40–42

operations, 34
slicing, 35

Literal values, 503
Local variables, 118
Loops, 85

break, 89
continue, 90
dictionary, 87
else clauses, 92

Generators (cont.)

■ INDEX

523

for loops, 86
while loops, 85
while True/break idiom, 91

�       � M
Markup system

handlers (handlers.py), 366–367
implementation

action method, 361
constructing, rules

and filters, 363–365
filters, 361
finding blocks of text, 355
handler, 358
handler superclass, 359–360
Parser class, 362
rules, 360–361
script creation, 356–357
web page generating, 357, 370

LATEX, 353
main program (markup.py), 369
plain-text file, 353
preparations, 354
rules (rules.py), 367–368
tools, 354

match function, 226
Membership operator, 82
Method resolution order (MRO), 143
Methods, attributes, functions, and, 137
Minimal client, 275
Minimal server, 275
Modules, 9–10

clientdb and billing code, 196
conditional test code, 199
define things, 197
exploring (see Exploring modules)
function defining, 197
importlib module, 197
interpreter, 195, 200
packages, 201
packaging.python.org, 199
problematic test code, 198
program, 195
PYTHONPATH environment variable, 201
sys module, 200
test code adding, 198

Multiple inheritance, 142

�       � N
NameError, 150
Namespace, 97, 118, 121, 139–140
Nesting, 120
Nesting blocks, 79

Networking modules
asynchronous I/O, 280–281
blocking or synchronous network

programming, 274
CGI, 277
forking and threading, 280
friends, 278
multiple connections, 279
network-related modules in

standard library, 277–278
opening remote files, 276
retrieving remote files, 276
select and poll, 281
selection, 273
socket module, 274
SocketServer framework, 278, 280
standard library, 273
Twisted, 283
urllib, 275
URLs, 277

Network News Transfer Protocol (NNTP), 397
News gathering agent

implementation
addSource and addDestination, 401
getItems and receiveItems, 401
methods, 399
NewsAgent, 401
newsagent2.py, 404–407
news.html page, 403
NewsItem, 400
news page generated, 402
nntplib, 398
NNTP server, 398
NNTPSource, 403
PlainDestination, 402
simple news-gathering agent, 399–400
SimpleWebSource, 403

preparations, 398
servers, 397
tools, 398
urllib, 397

NNTP. See Network News Transfer Protocol (NNTP)
Nonsensical text, 244
Numbered iteration, 88
Numbers and expressions, 3–4
NumPy module, 326

�       � O
Object-oriented programming, 110, 127, 129, 146–147
Object-relational mappers, 261
Objects

encapsulation, 129, 133–134
inheritance, 129, 134
polymorphism, 129–132

■ INDEX

524

One character (or byte) at a time, 248–249
One line at a time, 249
open function, 241–242
Operators, 504

* and **, 115–116
Boolean, 83
comparison, 79, 80
equality, 80–81
identity, 81
membership, 82

OSError, 150
os Module, 207
Overriding methods, 165–167

�       � P, Q
Packages, 201
Pack manager, 255
Palindrome, 327–328, 333–334
Parallel iteration, 87–88
Parameters, 105

actual, 105
change, 106–107
collect, 113–115
formal, 105
keyword, 111–113
positional, 111
practice, 117–118
style, 262
wrapping, 110

Parse method, 362
pass statement, 94
Piping Output, 244
Plain-text markup, 353
Playful Programming

configuration files, 346–347
extracting constants, 345
jujitsu, 343
logging, 348–349
prototyping, 344–345

Polymorphism
definition, 129
forms, 132
interface, 143
methods, 131
term, 130

popitem method, 74
Positional parameters, 111
Power, 122–123
Pretty picture painting

crucial tool, 374
file-handling and string-processing facilities, 373
implementation

data getting, 379–380
LinePlot class, 380–381

PolyLine, 376–377
prototype, 377–378
ReportLab, 375–376
sunspot graph, 379

preparations, 374
program, 373
sunspot program (sunspots.py), 380–381

profile, 319
Properties, magic methods

accessor methods, 174
_ _getattr_ _and _ _setattr_ _, 177–178
get_size and set_size methods, 174
property function, 175–176
Rectangle class, 174
static methods and class methods, 176–177

property function, 175–176
Prototyping, 344–345
_ _pycache_ _, 196
PyChecker, 315–317
PyCXX, 326
py2exe extension, 341
PyLint, 315–317
PyPy, 325
PySQLite, 266
Python, 71

abstraction, 497
conditional expressions, 499
control structures, 495
DB API

connections, 263
cursors, 263
exceptions, 263
global variables, 262
Specification v2.0, 262
SQLite and PySQLite, 265
types and special values, 265

dictionaries, 496
exceptions, 501
for loop iterates, 496
function, 497
input function, 496
module/script, 501
objects and stuff, 498–500
== operator, 495
standard library modules, 501
user interaction, 496

Python 3, 80
Python Library Reference, 275

�       � R
raise statement, 150, 514
Random access, 242, 245
Random module, 217
Reading and writing, files, 243

■ INDEX

525

Reading and writing lines, 245
Rectangle class, 134
Recursion

binary search, 123–125
definition, 121, 124
factorial, 122–123
infinite, 121
power, 122–123

Recursive generator, 182–183
Reference counting, 331
Regular expression, 223
Remote editing, CGI

implementation
editor running, 431
editor script writing, 428–429
file name form, creation, 428
prototype, 427
save script writing, 429–430
simple_edit.cgi script, 427
simple web editor, 426

preparations, 426
requirements, 425
tools, 425

ReportLab program, 375
Representational state transfer (REST), 305
Retrieving remote files, 276
return statement, 104, 514
Reversed and sorted iteration, 89
Rich Site Summary (RSS), 304
RPC, 305
Rule superclass, 361

�       � S
Saving and executing program

command prompt, 13
IDLE, 11
making executable program, 13
print statement, 12

SAX programming, 386
Scope, dictionary, 118, 120
Screen scraping

Beautiful Soup, 295
HTMLParser, 293–294
Tidy, 290–292
urllib and re, 289
XHTML, 293

Select and poll, asynchronous I/O with, 281
Sequence

adding, 30
comparisons, 82
indexing, 26, 28
len, min, and max, 33
longer steps, 29
membership, 32

multiplying, 30
nifty shortcut, 28
none, empty lists and initialization, 31
slicing, 28
unpacking, 73–74

Sequences and mappings protocol
arithmetic sequence, 171
collections module, 170
_ _delitem_ _(self, key), 170
_ _getitem_ _(self, key), 170
_ _len_ _ method, 172
_ _len_ _(self), 170
requirements, 170
_ _setitem_ _(self, key, value), 170
TypeError, 172

Server socket, 274
_ _setattr_ _ method, 178
Sets module, 211
Setuptools, 337–340
Shape class, 134
Short-circuit logic, 84
Simple node implementation

(simple_node.py), 456–458
SimpleWebSource, 403
SIP, 326
SOAP, 306
Socket module, 274
SocketServer framework, 274, 278, 280
somefile.txt file, 241
somescript.py, 244
Sorting, 41–42
SPAMFilters, 141
SQLite

advantages, 266
creating and populating tables, 268
definition, 265
and PySQLite, 266
Python standard library, 267
sample database application, 267
searching and dealing, 269

Standard library, 195
deques, 214
email headers, 231
fileinput module, 208–210, 213
finding sender, email, 232
group numbers and functions, 229–230
heappush function, 213
heaps, 213–214
match objects and groups, 228–229
os module, 207
random, 216–217, 219
regular expression

alternatives and subpatterns, 224
character sets, 224
escaping special characters, 224

■ INDEX

526

optional and repeated subpatterns, 225
string, 225
wildcard, 223

re module, 223
functions, 226
MatchObject, 226
maxsplit argument, 227
re.escape, 228
re.split, 227
re.sub, 227

sets module, 211–212
shelve and json, 219–222
simple database application, 220–222
standard modules, 237
sys module, 205–206
template system, 233–236
time module, 215, 216

Standard streams, 243
Statements, 6

assert, 513
assignment, 513
augmented assignment, 513
break, 515
compound, 516
continue, 515
del, 514
expressions, 513
for statement, 517
global, 516
if statement, 516
import, 515
pass, 514
raise, 514
return, 514
simple, 513
try, 517
while, 517
with statement, 517
yield, 514

store function, 109–110
Streams, 242
String(s), 106

bytearray, 22
bytes, 20–21
concatenating strings, 16
conversions, 48–49
conversion specifiers, 46
double quotes, 15
escaping quotes, 16
f-strings, 46
keyword arguments, 46
long string, 17

methods, 510–512
center, 53
find, 53
join, 54
lower, 54
replace, 55
split, 55–56
strip, 56
title, 55
translate, 56–57

operations, 45
operator, 45
raw string, 18–19
replacement field names, 47–48
and sequence comparisons, 82
signs, alignment, and zero-padding, 50, 52
single quotes, 15
str and repr, 16
unicode, 19
width, precision, and thousands

separators, 49
Structure, 108
Structure computer programs, 102
Subclass, 135
subprocess module, 326
Sunspot graph, 381
Superclass, 135, 140, 142
Super function, 168
SWIG, 326–328
Synchronous network programming, 274
SyntaxError, 150
sys module, 205

�       � T
Test-driven programming, 307
Testing

coverage, 309
debugging, 307
doctest, 310–312
requirement specification, 307–308
test-driven programming, 307, 310
unittest, 307, 312–314

Text Block generator, 356
Threading server, 280–281
threadsafety, 262
thread-safety level, 262
throw method, 185
Tkinter, 253–256, 258
Traceback, 149
Transmitting data, 274
try/except statement, 151, 155, 158, 160, 517
Tuples, 42–43

Standard library (cont.)

■ INDEX

527

Twisted framework
common GUI toolkits, 283
downloading and installing, 284
event-driven networking framework, 283
in Python 2, 284
server, 284–286

Twisted Matrix Laboratories, 283
TypeError, 150

�       � U
Unicode, 19
Uniform Resource

Locator (URL), 275, 277
United States Department of

Agriculture (USDA), 267
Unit tests (unittest), 312–314

profiler module, 319
PyChecker, 315–317
PyLint, 315–317

Universal newline mode, 242
UNIX system, 275
urandom function, 207
urllib module, 258, 275
urllib2 module, 275
Usenet, 397

�       � V
ValueError, 150
Variables, 5, 118
vars function, 118–119
Virtual tea party

asyncore framework, 410
chatserver.py, 419–422
implementation

ChatServer class, 411–412, 418–422
ChatSession class, 412–413, 418–422
command

interpretation, 416
login and logout rooms, 417
main chat room, 418
rooms, 417
simple chat server, 414–415

preparations, 410
tools, 409–410

�       � W
warnings module, 160–161
Weave tool, 325
Web framework

application, 303
powers.py, 303

Web services
REST, 305
RPC, 305
RSS, 304
SOAP, 306

while loops, 85, 91
while statement, 517
while True/break idiom, 91
with statement, 517

�       � X
XML

implementation
default handling, 392–393
directories support, 393
dispatcher mix-in class, 391–392
event handlers, 394–396
header and footer, 392–393
HTML pages, creation, 388–391
simple content handler, 386–388
web site constructor (website.py), 394–396

page maker script, 389
preparations, 385
project goals, 384
SAX mechanism, 391
tools, 384
web site represented, 385–386

�       � Y
yield statement, 514

�       � Z
Zen of exceptions, 158–160
ZeroDivisionError, 150, 152–153, 157
Zeroth character, 257
zip function, 88

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Instant Hacking: The Basics
	The Interactive Interpreter
	Algo . . . What?
	Numbers and Expressions
	Hexadecimals Octals and Binary

	Variables
	Statements
	Getting Input from the User
	Functions
	Modules
	cmath and Complex Numbers
	Back to the __future__

	Saving and Executing Your Programs
	Running Your Python Scripts from a Command Prompt
	Making Your Scripts Behave Like Normal Programs
	What About Double-Clicking?

	Comments

	Strings
	Single-Quoted Strings and Escaping Quotes
	Concatenating Strings
	String Representations, str and repr
	Long Strings, Raw Strings, and bytes
	Long Strings
	Raw Strings
	Unicode, bytes, and bytearray

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 2: Lists and Tuples
	Sequence Overview
	Common Sequence Operations
	Indexing
	Slicing
	A Nifty Shortcut
	Longer Steps

	Adding Sequences
	Multiplication
	None, Empty Lists, and Initialization

	Membership
	Length, Minimum, and Maximum

	Lists: Python’s Workhorse
	The list Function
	Basic List Operations
	Changing Lists: Item Assignments
	Deleting Elements
	Assigning to Slices

	List Methods
	append
	clear
	copy
	count
	extend
	index
	insert
	pop
	remove
	reverse
	sort
	Advanced Sorting

	Tuples: Immutable Sequences
	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 3: Working with Strings
	Basic String Operations
	String Formatting: The Short Version
	String Formatting: The Long Version
	Replacement Field Names
	Basic Conversions
	Width, Precision, and Thousands Separators
	Signs, Alignment, and Zero-Padding

	String Methods
	center
	find
	join

	lower
	replace
	split
	strip
	translate
	Is My String …

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 4: Dictionaries: When Indices Won’t Do
	Dictionary Uses
	Creating and Using Dictionaries
	The dict Function
	Basic Dictionary Operations
	String Formatting with Dictionaries
	Dictionary Methods
	clear
	copy
	fromkeys
	get
	items
	keys
	pop
	popitem
	setdefault
	update
	values

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 5: Conditionals, Loops, and Some Other Statements
	More About print and import
	Printing Multiple Arguments
	Importing Something as Something Else

	Assignment Magic
	Sequence Unpacking
	Chained Assignments
	Augmented Assignments

	Blocks: The Joy of Indentation
	Conditions and Conditional Statements
	So That’s What Those Boolean Values Are For
	Conditional Execution and the if Statement
	else Clauses
	elif Clauses
	Nesting Blocks
	More Complex Conditions
	Comparison Operators
	The Equality Operator
	is: The Identity Operator
	in: The Membership Operator
	String and Sequence Comparisons

	Boolean Operators

	Assertions

	Loops
	while Loops
	for Loops
	Iterating Over Dictionaries
	Some Iteration Utilities
	Parallel Iteration
	Numbered Iteration
	Reversed and Sorted Iteration

	Breaking Out of Loops
	break
	continue
	The while True/break Idiom

	else Clauses in Loops

	Comprehensions—Slightly Loopy
	A Better Solution
	And Three for the Road
	Nothing Happened!
	Deleting with del
	Executing and Evaluating Strings with exec and eval
	exec
	eval

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 6: Abstraction
	Laziness Is a Virtue
	Abstraction and Structure
	Creating Your Own Functions
	Documenting Functions
	Functions That Aren’t Really Functions

	The Magic of Parameters
	Where Do the Values Come From?
	Can I Change a Parameter?
	Why Would I Want to Modify My Parameters?

	What If My Parameter Is Immutable?
	Keyword Parameters and Defaults
	Collecting Parameters
	Reversing the Process

	Parameter Practice
	Scoping
	Recursion
	Two Classics: Factorial and Power

	Another Classic: Binary Search
	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 7: More Abstraction
	The Magic of Objects
	Polymorphism
	Polymorphism and Methods
	Polymorphism Comes in Many Forms
	Encapsulation
	Inheritance

	Classes
	What Is a Class, Exactly?
	Making Your Own Classes
	Attributes, Functions, and Methods
	Privacy Revisited
	The Class Namespace
	Specifying a Superclass
	Investigating Inheritance
	Multiple Superclasses
	Interfaces and Introspection
	Abstract Base Classes

	Some Thoughts on Object-Oriented Design
	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 8: Exceptions
	What Is an Exception?
	Making Things Go Wrong . . . Your Way
	The raise Statement
	Custom Exception Classes

	Catching Exceptions
	Look, Ma, No Arguments!
	More Than One except Clause
	Catching Two Exceptions with One Block
	Catching the Object
	A Real Catchall
	When All Is Well
	And Finally . . .

	Exceptions and Functions
	The Zen of Exceptions
	Not All That Exceptional
	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 9: Magic Methods, Properties, and Iterators
	If You’re Not Using Python 3
	Constructors
	Overriding Methods in General, and the Constructor in Particular
	Calling the Unbound Superclass Constructor
	Using the super Function

	Item Access
	The Basic Sequence and Mapping Protocol
	Subclassing list, dict, and str

	More Magic
	Properties
	The property Function
	Static Methods and Class Methods
	__getattr__, __setattr__, and Friends

	Iterators
	The Iterator Protocol
	Making Sequences from Iterators

	Generators
	Making a Generator
	A Recursive Generator
	Generators in General
	Generator Methods
	Simulating Generators

	The Eight Queens
	Generators and Backtracking
	The Problem
	State Representation
	Finding Conflicts
	The Base Case
	The Recursive Case
	Wrapping It Up

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 10: Batteries Included
	Modules
	Modules Are Programs
	Modules Are Used to Define Things
	Defining a Function in a Module
	Adding Test Code in a Module

	Making Your Modules Available
	Putting Your Module in the Right Place
	Telling the Interpreter Where to Look

	Packages

	Exploring Modules
	What’s in a Module?
	Using dir
	The __all__ Variable

	Getting Help with help
	Documentation
	Use the Source

	The Standard Library: A Few Favorites
	sys
	os
	fileinput
	Sets, Heaps, and Deques
	Sets
	Heaps
	Deques (and Other Collections)

	time
	random
	shelve and json
	A Potential Trap
	A Simple Database Example

	re
	What Is a Regular Expression?
	The Wildcard
	Escaping Special Characters
	Character Sets
	Alternatives and Subpatterns
	Optional and Repeated Subpatterns
	The Beginning and End of a String

	Contents of the re Module
	Match Objects and Groups
	Group Numbers and Functions in Substitutions
	Finding the Sender of an Email
	A Sample Template System

	Other Interesting Standard Modules

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 11: Files and Stuff
	Opening Files
	File Modes

	The Basic File Methods
	Reading and Writing
	Piping Output
	Reading and Writing Lines
	Closing Files
	Using the Basic File Methods

	Iterating over File Contents
	One Character (or Byte) at a Time
	One Line at a Time
	Reading Everything
	Lazy Line Iteration with fileinput
	File Iterators

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 12: Graphical User Interfaces
	Building a Sample GUI Application
	Initial Exploration
	Layout
	Event Handling
	The Final Program

	Using Something Else
	A Quick Summary
	What Now?

	Chapter 13: Database Support
	The Python Database API
	Global Variables
	Exceptions
	Connections and Cursors
	Types

	SQLite and PySQLite
	Getting Started
	A Sample Database Application
	Creating and Populating Tables
	Searching and Dealing with Results

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 14: Network Programming
	A Handful of Networking Modules
	The socket Module
	The urllib and urllib2 Modules
	Opening Remote Files
	Retrieving Remote Files
	Other Modules

	SocketServer and Friends
	Multiple Connections
	Forking and Threading with SocketServer
	Asynchronous I/O with select and poll

	Twisted
	Downloading and Installing Twisted
	Writing a Twisted Server

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 15: Python and the Web
	Screen Scraping
	Tidy and XHTML Parsing
	What’s Tidy?
	Getting Tidy
	But Why XHTML?
	Using HTMLParser
	Beautiful Soup

	Dynamic Web Pages with CGI
	Step 1: Preparing the Web Server
	Step 2: Adding the Pound Bang Line
	Step 3: Setting the File Permissions
	CGI Security Risks
	A Simple CGI Script
	Debugging with cgitb
	Using the cgi Module
	A Simple Form

	Using a Web Framework
	Other Web Application Frameworks

	Web Services: Scraping Done Right
	RSS and Friends
	Remote Procedure Calls with XML-RPC
	SOAP

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 16: Testing, 1-2-3
	Test First, Code Later
	Precise Requirement Specification
	Planning for Change
	The 1-2-3 (and 4) of Testing

	Tools for Testing
	doctest
	unittest

	Beyond Unit Tests
	Source Code Checking with PyChecker and PyLint
	Profiling

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 17: Extending Python
	The Best of Both Worlds
	The Really Easy Way: Jython and IronPython
	Writing C Extensions
	A Swig of … SWIG
	What Does It Do?
	I Prefer Pi
	The Interface File
	Running SWIG
	Compiling, Linking, and Using
	A Shortcut Through the Magic Forest of Compilers
	Hacking It on Your Own
	Reference Counting
	A Framework for Extensions
	Palindromes, Detartrated1 for Your Enjoyment

	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 18: Packaging Your Programs
	Setuptools Basics
	Wrapping Things Up
	Compiling Extensions
	Creating Executable Programs with py2exe
	A Quick Summary
	New Functions in This Chapter
	What Now?

	Chapter 19: Playful Programming
	Why Playful?
	The Jujitsu of Programming
	Prototyping
	Configuration
	Extracting Constants
	Configuration Files

	Logging
	If You Can’t Be Bothered
	If You Want to Learn More
	A Quick Summary
	What Now?

	Chapter 20: Project 1: Instant Markup
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Finding Blocks of Text
	Adding Some Markup

	Second Implementation
	Handlers
	A Handler Superclass
	Rules
	A Rule Superclass
	Filters
	The Parser
	Constructing the Rules and Filters
	Putting It All Together

	Further Exploration
	What Now?

	Chapter 21: Project 2: Painting a Pretty Picture
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Drawing with ReportLab
	Constructing Some PolyLines
	Writing the Prototype

	Second Implementation
	Getting the Data
	Using the LinePlot Class

	Further Exploration
	What Now?

	Chapter 22: Project 3: XML for All Occasions
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Creating a Simple Content Handler
	Creating HTML Pages

	Second Implementation
	A Dispatcher Mix-In Class
	Factoring Out the Header, Footer, and Default Handling
	Support for Directories
	The Event Handlers

	Further Exploration
	What Now?

	Chapter 23: Project 4: In the News
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Second Implementation
	Further Exploration
	What Now?

	Chapter 24: Project 5: A Virtual Tea Party
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	The ChatServer Class
	The ChatSession Class
	Putting It Together

	Second Implementation
	Basic Command Interpretation
	Rooms
	Login and Logout Rooms
	The Main Chat Room
	The New Server

	Further Exploration
	What Now?

	Chapter 25: Project 6: Remote Editing with CGI
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Second Implementation
	Creating the File Name Form
	Writing the Editor Script
	Writing the Save Script
	Running the Editor

	Further Exploration
	What Now?

	Chapter 26: Project 7: Your Own Bulletin Board
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Second Implementation
	Writing the Main Script
	Writing the View Script
	Writing the Edit Script
	Writing the Save Script
	Trying It Out

	Further Exploration
	What Now?

	Chapter 27: Project 8: File Sharing with XML-RPC
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Implementing a Simple Node
	Trying Out the First Implementation

	Second Implementation
	Creating the Client Interface
	Raising Exceptions
	Validating File Names
	Trying Out the Second Implementation

	Further Exploration
	What Now?

	Chapter 28: Project 9: File Sharing II—Now with GUI!
	What’s the Problem?
	Useful Tools
	Preparations
	First Implementation
	Second Implementation
	Further Exploration
	What Now?

	Chapter 29: Project 10: Do-It-Yourself Arcade Game
	What’s the Problem?
	Useful Tools
	pygame
	pygame.locals
	pygame.display
	pygame.font
	pygame.sprite
	pygame.mouse
	pygame.event
	pygame.image

	Preparations
	First Implementation
	Second Implementation
	Further Exploration
	What Now?

	Appendix A: The Short Version
	The Basics
	Functions
	Objects and Stuff . . .
	Some Loose Ends

	Appendix B: Python Reference
	Expressions
	Statements
	Simple Statements
	Expression Statements
	Assert Statements
	Assignment Statements
	Augmented Assignment Statements
	The pass Statement
	The del Statement
	The return Statement
	The yield Statement
	The raise Statement
	The break Statement
	The continue Statement
	The import Statement
	The global Statement
	The nonlocal Statement

	Compound Statements
	The if Statement
	The while Statement
	The for Statement
	The try Statement
	The with Statement
	Function Definitions
	Class Definitions

	Index

