some-notes-about-rbm-and-dbn

Author: sandyzikun

Others:

about ffmpeg:

about transformer:

about LeNets (LeNet-1, LeNet-4, and LeNet-5):

about SVM:

about x86 Assembly:

2022-04-09更新:

RBM(Restricted Boltzmann Machine, 受限玻尔兹曼机)是一种概率图模型, 简单记录通过堆叠sklearn.neural_network中的BernoulliRBM实现DBN(Deep Belief Network, 深度信念网络).

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env Python
# -*- coding: utf-8 -*-
import numpy as np
import sklearn.datasets
import sklearn.linear_model
import sklearn.neural_network
import sklearn.model_selection
import sklearn.pipeline
import sklearn.metrics
class Constants(object):
RANDOM_STATE = 39
nist = sklearn.datasets.load_digits()
X_Train, X_Test, y_Train, y_Test = sklearn.model_selection.train_test_split(nist.data / nist.data.max(), nist.target, test_size=.2, random_state=Constants.RANDOM_STATE)
dbn = sklearn.pipeline.Pipeline([
("rbm1", sklearn.neural_network.BernoulliRBM(n_components=100, learning_rate=.06, n_iter=100, verbose=1, random_state=Constants.RANDOM_STATE)),
#("rbm2", sklearn.neural_network.BernoulliRBM(n_components=80, learning_rate=.06, n_iter=100, verbose=1, random_state=Constants.RANDOM_STATE)),
#("rbm3", sklearn.neural_network.BernoulliRBM(n_components=60, learning_rate=.06, n_iter=100, verbose=1, random_state=Constants.RANDOM_STATE)),
("logistic", sklearn.linear_model.LogisticRegression(C=100))
]).fit(X_Train, y_Train)
y_Pred = dbn.predict(X_Test)
print(sklearn.metrics.classification_report(y_Test, y_Pred))

about Enigma Machine: https://www.cnblogs.com/sunchao1984/p/5089020.html

about UTF-8, UTF-16, UTF-32: https://www.jianshu.com/p/55bd8d7dfc64/

about Cryptography: